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Overview of the talk

The talk covers (hopefully all) three independent topics at the interface of
several research areas:

1 Part 1: Number theory
Unit equations on the quaternion algebra; Diophantine equations.

2 Part 2: Combinatorics
Polynomial equations on the algebra of n by n matrices; Point
counting of moduli spaces of modules.

3 Part 3: Algebraic geometry
Topology of configuration spaces of points; Mixed Hodge theory.
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Two things stemming from equations

Diophantine equation:
a (system of) polynomial equation(s) that asks for integer (or
sometimes rational) solutions.

We usually care about the existence and infinitude of solutions.
The nature is discrete, and when viewed näıvely, every solution is a
coincidence to some extent.
Example: x3 + y3 + z3 = 42 for integers x, y, z. (Booker and
Sutherland, 2019; 17-digit solution!)

Algebraic variety (or “variety”):
the solution set of a (system of) polynomial equation(s), typically
over the real numbers R or complex numbers C.

We usually care about its geometry; rich structures can be put on the
solution set.
The nature is continuous; solutions typically exist and form a
continuum.
Examples: a parabola y = x2, or more generally, a conic section
Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0.
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Unit equations: background

A unit equation is an equation of the form

x+ y = 1,

where x and y are generally required to have a specific form expressed by
multiplication.

Example

Find solutions of x+ y = 1, where x = ±2n, y = ±3n,m, n ∈ Z.

One can soon find these solutions:

(x, y) = (2,−1), (−2, 3), (4,−3), (−8, 9).

Question

Are there more solutions?
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Unit equations: background

Example

Find solutions of x+ y = 1, where x = ±2n, y = ±3n,m, n ∈ Z.

Question

Are there more solutions?

Answer

No (nontrivial)! More generally, any equation of this kind only has at most
finitely many solutions. (coming next)
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Unit equations: background

Theorem (Beukers and Schlickewei, 1996)

Let Γ be a finitely generated subgroup of C× (the multiplicative group).
Then the equation

x+ y = 1, x, y ∈ Γ

has at most finitely many solutions (x, y).

The hypothesis means that x and y are of the form an1
1 . . . anr

r for fixed
a1, . . . , ar ∈ C× and freely chosen integers n1, . . . , nr. This theorem tells
us something deep about how addition and multiplication interact.
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Unit equations: contributions

We proved the first noncommutative analogue of the theorem. We
considered quaternions H in place of C. Multiplication on H is not
commutative.

Theorem 1 (H., 2020)

Let Γ1,Γ2 be finitely generated semigroupsa of H×. If Γ1 is commutative,
then the equation x+ y = 1 has at most finitely many solutions with
x ∈ Γ1 and y ∈ Γ2.

aTechnical assumption: they must be generated by algebraic quaternions of norms
greater than 1.

Typical example. Say f1, f2, a, b, c are fixed quaternions (satisfying the
same technical condition) such that f1, f2 commute, then the unit
equation x+ y = 1 has at most finitely many solutions if x is of the form
fn1
1 fn2

2 where n1, n2 ≥ 0, and y is any word in a, b, c (for example, bccab;
here, inverses like a−1 are not allowed.).
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Unit equations: methods

What’s old:

The proof used the “Baker’s method”, a method based on estimates of
linear combinations of logarithms that has been widely applied to the
study of unit equations.

What’s new:

Since quaternions are noncommutative, an essential tool for the
classical unit equations, namely the p-adic norm, is no longer available.
Fortunately, the usual absolute value is available and turns out to be
enough to prove the result.
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Unit equations: applications

The classical commutative result
was used to prove that certain Diophantine equations (for example,
y2 = x3 + x+ 1) have at most finitely many integer solutions.
was used to prove a result (Odesky 2020) about iterations of self-maps
of abelian varieties with commutative endomorphism rings. (natural
application, because composition of self-maps correspond to
multiplication in the endomorphism ring.)

The new noncommutative result relaxes the commutativity
assumption in Odesky’s result. Key: End(E) ⊆ H.

Corollary 2 (H., 2020)

Let E be a (possibly supersingular) elliptic curve over an algebraically
closed field k, and let f, g : E → E be regular maps of degrees greater
than 1. If there are points A,B ∈ E(k) such that the forward orbits
Of (A) := {A, f(A), f2(A), . . .} and Og(B) := {B, g(B), g2(B), . . .} have
infinite intersection, then f and g have a common iterate, namely,
fm0 = gn0 for some positive integers m0, n0.
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Pause 1 out of 3

Questions?
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Matrix enumeration: background

In 1960, Feit and Fine proved a beautiful formula that counts pairs of
commuting matrices over a finite field Fq of q elements.

Theorem (Feit and Fine, 1960)

∞∑
n=0

|{A,B ∈ Matn(Fq) : AB = BA}|
|GLn(Fq))|

xn =
∏
i,j≥1

1

1− xiq2−j
,

where
|GLn(Fq)| = (qn − 1)(qn − q) . . . (qn − qn−1).

One can read the counts from the x-coefficients of RHS. This generating
function with a normalization factor 1/|GLn(Fq)| is the nicest way to
present the answer to the counting problem (for a good reason).
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Matrix enumeration: background

How does this problem fit in the theme of the talk?

It is essentially about the solution set of the equation AB = BA on
the noncommutative ring Matn(C). (Not Fq!!)

We focus on the geometric feature of how the solution set is
composed of simpler varieties (like Cn) via taking disjoint unions and
complements.

The essential part of this geometric feature is completely encapsulated
by point counting over Fq; this is why we stated the result over Fq.

The flavor of such a problem is geometric and combinatorial.
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Matrix enumeration: contribution 1

We found the generating functions for the solution counts of two other
matrix equations. The first one generalizes the result of Feit and Fine.

Theorem 3 (H., 2022)

Let ζ be a primitive m-th root of unity of Fq. Then

∞∑
n=0

|{A,B ∈ Matn(Fq) : AB = ζBA}|
|GLn(Fq)|

xn =

∞∏
i=1

Fm(xi; q),

where

Fm(x; q) :=
1− xm

(1− x)(1− xmq)
· 1

(1− x)(1− xq−1)(1− xq−2) . . .
.

Feit–Fine is the case where ζ = 1,m = 1. The right-hand side is an
explicit series in x, which is notably an infinite product of simple factors.
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Matrix enumeration: contribution 2

The second result is an analogue of Feit–Fine. It counts mutually
annihilating matrices, namely, matrix pairs (A,B) with AB = BA = 0.
We use the notation

(a; t)n = (1− a)(1− at) . . . (1− atn−1).

Theorem 4 (H., 2022+)

∞∑
n=0

|{A,B ∈ Matn(Fq) : AB = BA = 0}|
|GLn(Fq)|

xn =
1

(x; q−1)2∞
Hq(x),

where

Hq(x) :=

∞∑
k=0

q−k2x2k

(q−1; q−1)k
(xq−k−1; q−1)∞.

Its significance will be explained after a general discussion.
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Matrix enumeration: interpretations

Geometric interpretation in terms of moduli spaces:

A moduli space is a space that parametrizes all possible structures of
a certain kind.
Example. P1 = {lines through 0 in A2}.
Each of the theorems above turns out to be the point count of a
moduli space that parametrizes modules over a certain ring R, where

R is the affine plane Fq[X,Y ] in Feit–Fine (AB = BA);
R is the quantum plane Fq{X,Y }/(XY − ζY X) in the AB = ζBA
theorem;
R is a nodal curve Fq[X,Y ]/(XY ) in the AB = BA = 0 theorem.

Last one explained. An Fq[X,Y ]/(XY )-mod structure on Fq
n ↭

How X,Y act (say X as A ↷ Fq
n, Y as B) ↭ AB = BA = 0 in

Matn(Fq).

The generating function (with the 1/|GLn(Fq)| factor!) encodes a
natural weighted count of those modules, called the Cohen–Lenstra
measure.
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Matrix enumeration: significance

∞∑
n=0

|{A,B ∈ Matn(Fq) : AB = BA = 0}|
|GLn(Fq)|

xn =
1

(x; q−1)2∞
Hq(x),

where

Hq(x) :=

∞∑
k=0

q−k2x2k

(q−1; q−1)k
(xq−k−1; q−1)∞.

Recall that this is the generating function associated to a nodal curve,
which is singular.
In fact, the generating function associated to any smooth curve and
smooth surface is well-known.
This is the first result about the singular case.
The most surprising feature is that the mysterious factor Hq(x) is an
entire function in x. This suggests that singular cases, while mostly
mysterious, may have some general patterns.
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Pause 2 out of 3

Questions?
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Configuration spaces: background

Let n ≥ 0. The n-th configuration space of a base space X is the moduli
space of unordered tuples of n distinct points on X:

Confn(X) := {(x1, . . . , xn) ∈ Xn : xi ̸= xj}/Sn.

Here, X can be a topological space or a quasi-projective variety over any
field.

Recall the geometric feature of how a variety is composed of simpler ones
via “cut-and-paste”. This invariant is called the motivic class. It turns out
that the motivic classes of configuration spaces follow a simple
combinatorial pattern (Vakil and Wood, 2015).
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Configuration spaces: background

We focus on the Betti numbers of configuration spaces. For each space we
can talk about the i-th Betti number hi(·) for every i ≥ 0. The Betti
numbers are topological invariants that remember things like “the number
of holes on a surface”.

The motivic class determines many other invariants, such as point counts
over finite fields and Euler characteristic. Such invariants are called
motivic invariants. However, the Betti number is not a motivic invariant,
so the Betti numbers of configuration spaces are not automatically known.

Nevertheless, this nonmotivic invariant often has combinatorial behaviors
similar to those of the motivic invariants. We proved two results that
illustrate this point.
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Configuration spaces: contribution 1

The first result states that the Betti numbers of configuration spaces of a
punctured torus are given by a rational generating function.

Theorem 5 (Cheong and H., 2022)

Let E× be an elliptic curve over C minus one point, and let hi(·) denote
the i-th Betti number. Then∑

i,n≥0

(−1)ihi(Confn(E×))u2n−w(i)tn =
(1− ut)2(1− u2t2)

(1− u2t)(1− ut2)2
,

where w(i) = ⌊3i/2⌋.

The right-hand side is in fact a certain motivic invariant of the spaces in
question. The degree shifting w(i) is required to “match” the nonmotivic
invariant and the motivic one, and it turns out that w(i) has a clear
geometric meaning.
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Configuration spaces: contribution 1

The geometric significance of w(i) lies in the mixed Hodge theory. The
following statement, which we do not explain its meaning, would directly
imply our result using general arguments in the mixed Hodge theory.

Theorem 6 (Cheong and H., 2022)

The mixed Hodge structure on H i(Confn(E×);Q) is pure of weight
w(i) = ⌊3i/2⌋.

This statement that finds the geometric meaning of w(i) is in fact the
major content of our work.
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Configuration spaces: contribution 2

What if there are two or more punctures? The second result describes how
puncturing a noncompact base space affects the Betti numbers of its
configuration spaces. Let X× denote X minus any one point.

Theorem 7 (H., 2022+)

Let X be a smooth noncompact complex variety of dimension d. Under a
mixed-Hodge-theoretic assumptiona on X, the Betti numbers of
Confn(X×) are given by∑

i,n≥0

hi(Confn(X×))uitn =
1

1− u2d−1t

∑
i,n≥0

hi(Confn(X))uitn.

aThe precise assumption is that X is a noncompact variety X minus zero or more
points, such that the i-th cohomology of X is pure of a weight proportional to i.

If X is a connected smooth compact variety minus r ≥ 1 points, then the
assumption is satisfied; this recovers Kallel 2008.
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Configuration spaces: contribution 2

∑
i,n≥0

hi(Confn(X×))uitn =
1

1− u2d−1t

∑
i,n≥0

hi(Confn(X))uitn.

An analogue in terms of motivic classes is known (and is an easy
consequence of the knowledge of motivic classes of configuration
spaces in general).

The Betti number is not motivic, so the analogy needs a separate
explanation.

We gave a much refined result1 that implies the theorem and its
motivic analogue simultaneously, explaining the analogy; this is the
major content of this work.

1The refined result is in terms of mixed Hodge numbers and the cohomology of the
ordered configuration spaces as an Sn-representation.
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Configuration spaces: methods

Leray spectral sequence computes the cohomology of Confn(X)
based on the cohomology of X and explicit generators and relations.
There is a freedom here: we can actually choose any X such that X
is open in X. Then the Leray spectral sequence would involve
cohomology of X and some extra generators and relations that
depend on the combinatorics of the complement X \X.
But the computation is only manageable if X satisfies a purity
condition in the mixed Hodge theory.
To work on the punctured elliptic curve X = E× (Theorem 6), we
just choose X = X because the purity condition is satisfied.
To work on Theorem 7, say the case where X is a six-punctured
curve, we must choose X to be a one-punctured curve, so X has the
purity condition. The price is extra combinatorics due to the extra
five punctures, but that turns out to be manageable.
The noncompactness of X is equivalent to Htop(X) = 0, which is
necessary as the computation turns out.
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Pause 3 out of 3

Questions?
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Thank you and happy π day!


