ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION

YIFENG HUANG

ABSTRACT. This is a note for the Student Arithmetic learning seminar at the University of Michigan, aimed at presenting the important properties of CM elliptic curves and fixing a gap in the proof of [AEC2, Chapter II, Theorem 4.1]. This note can be used as a supplementary to [AEC2, Chapter II] for readers familiar with the basics of elliptic curves [AEC1, Chapter III] and algebraic number theory.

1. References

- (a) [AEC1] Arithmetic of Elliptic Curves by J. Silverman
- (b) [AEC2] Advanced Topics in the Arithmetic of Elliptic Curves by J. Silverman
- (c) [CFT] Class Field Theory by J. Milne

2. Introduction

Recall div f that for an elliptic curve E over \mathbb{C} , the endomorphism group $R = \operatorname{End}(E)$ is either \mathbb{Z} or an order of an imaginary quadratic field. Say E has \mathbf{CM} if the latter holds, i.e. the curve has extra "multiplications" apart from multiplication by integers. Focus on the case $R = \mathcal{O}_K$ where K is an imaginary quadratic field.

Any elliptic curve over \mathbb{C} is of the form $E_{\Lambda} := \mathbb{C}/\Lambda$ (analytic picture), where Λ is a lattice in \mathbb{C} . The equation of E_{Λ} is

$$E_{\Lambda}: y^2 = 4x^3 - g_2(\Lambda) - g_3(\Lambda)$$
 (algebraic picture)

where g_2, g_3 are given by infinite series. So it is hard in general to go between analytic and algebraic picture.

Example 2.1. Let \mathfrak{a} be a fractional ideal of $R = \mathcal{O}_K$, then \mathfrak{a} is a lattice in \mathbb{C} . Consider $E = \mathbb{C}/\mathfrak{a}$, then $\operatorname{End}(E) = \{\alpha \in \mathbb{C} : \alpha\mathfrak{a} \subseteq \mathfrak{a}\}$ (true for any lattice). Multiply by \mathfrak{a}^{-1} at both sides, we get $\alpha \in R$,

Date: Mar. 23, 2017.

so $\operatorname{End}(E)=R$. Any $\alpha\in R$ gives a canonical "multiplication-by- α " endomorphism

$$[\alpha]: \mathbb{C}/\mathfrak{a} \to \mathbb{C}/\mathfrak{a}$$
$$z \mapsto \alpha z$$

For the invariant differential $\omega = dz$, we have

$$[\alpha]^*(dz) = d([\alpha] \circ z) = d(\alpha z) = \alpha dz$$

So
$$[\alpha]^*\omega = \alpha\omega$$
 (*).

Note that the multiplication map by α is constructed analytically. However, (*) gives a purely algebraic characterization of the action of R on E: for an abstract CM curve E by R and $\alpha \in R$, the **normalized multiplication-by-** α map is the unique endomorphism $[\alpha]$ of E such that (*) holds for one (and all) invariant differential $\omega \in \Gamma(E, \Omega^1_{E/\mathbb{C}})$. Normalized multiplication commutes with isogeny (the proof is formal using (*)).

Example 2.2. Consider $E: y^2 = x^3 + 1, j = 0$. It has an endomorphism

$$\rho: (x,y) \mapsto (\zeta_3 x, y)$$

Check: $(\zeta_3 x)^3 + 1 = x^3 + 1 = y^2$

Is it an integer multiplication? Look at the effect of ρ on invariant differential $\omega = \frac{dx}{y}$

$$\rho^* \frac{dx}{y} = \frac{d(x \circ \rho)}{y \circ \rho} = \frac{d(\zeta_3 x)}{y} = \zeta_3 \frac{dx}{y}$$

Thus ρ is the mutiplication map by ζ_3 , and in particular it is complex! Thus the endomorphism ring of E contains $\mathbb{Z}[\zeta_3]$, which is already a maximal order of $\mathbb{Q}(\sqrt{-3})$, so $\mathrm{End}(E)$ is exactly $R = \mathbb{Z}[\zeta_3]$.

Upshot: I computed the endomorphism ring and give the normalized multiplication map without rewriting E analytically.

Example 2.3. $E: y^2 = x^3 + x, j = 1728, \rho(x, y) = (-x, iy).$

$$\rho^* \frac{dx}{y} = \frac{d(-x)}{iy} = i\frac{dx}{y}$$

Proposition 2.4. Any CM curve by $R = \mathcal{O}_K$ is isomorphic to \mathbb{C}/\mathfrak{a} for some fractional ideal \mathfrak{a} of K.

Proof. WLOG $E = \mathbb{C}/\Lambda$, $\Lambda = \mathbb{Z} \oplus \mathbb{Z}\tau$, $\tau \in \mathbb{C} - \mathbb{R}$. Choose $\alpha \in R - \mathbb{Z}$, then

$$\alpha\Lambda \subseteq \Lambda \implies a\tau \in \Lambda \implies \alpha\tau = a + b\tau, a, b \in \mathbb{Z} \implies \tau = \frac{a}{\alpha - b}$$

Note that $\alpha - b \neq 0$ since $\alpha \notin \mathbb{Z}$. So $\tau \in K$, and Λ is itself a fractional ideal of K.

Upshot: the number of isomorphic classes of CM curves by R is finite. In fact it equals to $h_K = \text{class number of } K$.

Corollary 2.5. If E has CM, then the j-invariant $j(E) \in \overline{\mathbb{Q}}$. Moreover, $[\mathbb{Q}(j(E)) : \mathbb{Q}] \leq h_K$. (In fact we will show that equality holds.)

Proof. Recall for an elliptic curve $E: y^2 = x^3 + Ax + B$, the *j*-invariant is $j = 1728 \frac{4A^3}{4A^3 + 27B^2}$, and two elliptic curves defined over any algebraically closed field L are isomorphic over L iff they have the same *j*-invariant.

Now consider an arbitrary field automorphism $\sigma \in \operatorname{Aut}(\mathbb{C})$. For an elliptic curve $E: y^2 = x^3 + Ax + B$, consider $E^{\sigma}: y^2 = x^3 + \sigma(A)x + \sigma(B)$. We have an isomorphism $\operatorname{End}(E) \to \operatorname{End}(E^{\sigma}): f \mapsto f^{\sigma}$, so $\operatorname{End}(E^{\sigma}) = R$. By finiteness result, the isomorphic classes of $\operatorname{End}(E^{\sigma})$ have at most h_K choices. Note $\sigma(j(E)) = j(E^{\sigma})$ because it is a rational function of A, B with rational coefficient. So $\sigma(j(E))$ has at most h_K choices.

For example, if $K = \mathbb{Q}(\sqrt{-163})$, then $h_K = 1$, so $j(\mathbb{C}/\mathcal{O}_K)$ is rational. In fact it will be an integer (see the last section).

Remark 2.6. I concluded the finiteness using analytic picture, but I applied this result in algebraic picture.

Upshot: when studying CM curves, can assume they are all defined on a number field L. Moreover, given two elliptic curves E_1, E_2 defined over L, any given isogeny $E_1 \to E_2$ is defined over a finite field extension of L (since isogeny is given by a rational formula, which involves only finitely many coefficients). As $\operatorname{Hom}(E_1, E_2)$ is finitely generated, we can enlarge L to make every isogeny $E_1 \to E_2$ defined over L.

3. Analytic action vs Algebraic action

Let $\mathcal{E}\ell\ell(R) = \{\mathbb{C}\text{-isomorphic classes of CM curves by } R\}$. We have $\mathcal{E}\ell\ell(R)$ consists of elliptic curves $E_{\Lambda} = \mathbb{C}/\Lambda$ such that $\alpha\Lambda \subseteq \Lambda$ iff $\alpha \in R$. Note that Λ is determined up to \mathbb{C}^* scaling. Equip $\mathcal{E}\ell\ell(R)$ with $\mathcal{C}\ell(K)$ action

$$\overline{\mathfrak{a}} * E_{\Lambda} = E_{\mathfrak{a}^{-1}\Lambda}$$

Since Λ is determined up to \mathbb{C}^* , the choice of Λ does not matter. Also principal ideals act on Λ by scaling, so the action is well-defined on the

class group. Finally, $\operatorname{End}(E_{\mathfrak{a}^{-1}\Lambda}) = R$ as well: $\alpha \mathfrak{a}^{-1}\Lambda \subseteq \mathfrak{a}^{-1}\Lambda \implies \alpha\Lambda \subseteq \Lambda$ by multiplying by \mathfrak{a} at both sides.

Since every EC with CM by R has the form \mathbb{C}/\mathfrak{a} , \mathfrak{a} a fractional ideal, we have

Proposition 3.1. There is an isomorphism of $C\ell(K)$ -sets

$$\mathcal{C}\ell(K) \to \mathcal{E}\ell\ell(R)$$
$$\overline{\mathfrak{a}} \mapsto \mathbb{C}/\mathfrak{a}^{-1}$$

In other words, $\mathcal{C}\ell(K)$ acts on $\mathcal{E}\ell\ell(R)$ freely and transitively. To write down this action for an abstract elliptic curve, we need its analytic picture.

Recall from the proof of rationality that $\operatorname{Aut}(\mathbb{C})$ also acts on $\mathcal{E}\ell\ell(R)$. To write down this action for an abstract elliptic curve, we need to find its equation (algebraic picture).

Proposition 3.2. Let $\overline{\mathfrak{a}} \in \mathcal{C}\ell(K)$, $\sigma \in \operatorname{Aut}(\mathbb{C})$, $E \in \mathcal{E}\ell\ell(R)$. Then

$$(\overline{\mathfrak{a}} * E)^{\sigma} = \sigma(\overline{\mathfrak{a}}) * E^{\sigma}$$

(Note $\sigma(\mathfrak{a})$ is in $\sigma(K)$, which is K since K is normal over \mathbb{Q} .)

This statement sounds vacuous, but it is not trivial. Start with an abstract elliptic curve $E \in \mathcal{E}\ell\ell(R)$, to check the statement, compute

LHS: Find a lattice for E, compute $\overline{\mathfrak{a}} * E$, find the equation, apply σ to its coefficients, get an algebraic representation;

RHS: Find an equation for E, apply σ to coefficients, find the lattice, apply $\sigma(\overline{\mathfrak{a}})$ action, get an analytic representation

and finally compare the algebraic picture in LHS and analytic picture in RHS.

Proof. The key is to find an algebraic description of the analytic action. Claim: $\overline{\mathfrak{a}} * E = \operatorname{Hom}_R(\mathfrak{a}, E)$. Write $E = \mathbb{C}/\Lambda$. Recall that \mathfrak{a} is an invertible sheaf over R, thus

$$\operatorname{Hom}_R(\mathfrak{a}, E) = \mathfrak{a}^{-1} \otimes_R \mathbb{C}/\Lambda = \mathfrak{a}^{-1} \otimes_R \mathbb{C}/\mathfrak{a}^{-1}\Lambda$$

Now \mathbb{C} is flat over K flat over R, so the \mathbb{C} vector space $\mathfrak{a}^{-1} \otimes_R \mathbb{C} \hookrightarrow K \otimes_R \mathbb{C} = K \otimes_K \mathbb{C} = \mathbb{C}$. Thus $\mathfrak{a}^{-1} \otimes_R \mathbb{C} \cong \mathbb{C}$, and

$$\operatorname{Hom}_R(\mathfrak{a}, E) = \mathbb{C}/\mathfrak{a}^{-1}\Lambda = \overline{\mathfrak{a}} * E$$

Now fix a finite presentation of \mathfrak{a} as R-module:

$$R^n \xrightarrow{A} R^n \to \mathfrak{a} \to 0$$

Apply $\operatorname{Hom}_R(-, E)$, we get

$$0 \to \operatorname{Hom}_R(\mathfrak{a}, E) \to \operatorname{Hom}_R(R^m, E) = E^n \xrightarrow{A^T} \operatorname{Hom}_R(R^n, E)$$

Therefore

$$\overline{\mathfrak{a}} * E \cong \ker(E^n \xrightarrow{A^T} E^m),$$

the kernel of a homomorphism of abelian varieties.

Now everything is algebraic, so it is routine to check that everything commutes with field automorphisms of \mathbb{C} .

Corollary 3.3. The subgroup $\operatorname{Aut}(\mathbb{C}/K)$ acts on $\mathcal{E}\ell\ell(R)$ as a $\mathcal{C}\ell(K)$ -sets.

Proof. When
$$\sigma$$
 fixes K , $(\overline{\mathfrak{a}}*E)^{\sigma} = \sigma(\overline{\mathfrak{a}})*E^{\sigma} = \overline{\mathfrak{a}}*E^{\sigma}$.

Hence from now on, we only study the action of $\operatorname{Aut}(\mathbb{C}/K)$ (instead of the whole $\operatorname{Aut}(\mathbb{C}/\mathbb{Q})$ on $\mathcal{E}\ell\ell(R)$. We have a striking formula to compute the analytic action in terms of algebraic action:

Let $E, \overline{\mathfrak{a}}$ be as above, and σ is any automorphism of \mathbb{C} that extends the Frobenius element $(\mathfrak{a}, K^{\text{nr}}/K)$ on the maximal unramified extensions K^{nr} of K, then

$$\overline{\mathfrak{a}} * E = E^{\sigma}$$

We will give a much stronger form of this statement and prove it using class field theory.

Note the definition of E^{σ} is independent of the equation: if E_1, E_2 are two isomorphic models over \mathbb{C} , we have isomorphism $\varphi: E_1 \to E_2$, then there is isomorphism $\varphi^{\sigma}: E_1^{\sigma} \to E_2^{\sigma}$. Therefore, if E has a model defined over E (Galois over E), and E0 fixes E1, then $E^{\sigma} = E$ 2. We get

Proposition 3.4. If L is a Galois extension of K that contains j(E), then the algebraic action factors through

$$F: \operatorname{Gal}(L/K) \to \operatorname{Aut}_{\mathcal{C}\ell(K)} \mathcal{E}\ell\ell(R) \cong \mathcal{C}\ell(K)$$

Since RHS is abelian, it further factors through

$$F: \operatorname{Gal}(L_{\operatorname{ab}}/K) \to \mathcal{C}\ell(K)$$

where $L_{\rm ab}$ is the maximal abelian subextension of L/K.

From now on, we can talk about E^{σ} for $\sigma \in \operatorname{Gal}(L/K)$ where L is as above.

4. Hilbert Class Field

Theorem 4.1 (Main Theorem, AEC2 II.4.1). J Define H = K(j(E)) where $E \in \mathcal{E}\ell\ell(R)$. Then H is Galois, abelian and unramified over K (so the Frobenius map $I \to \operatorname{Gal}(H/K)$, $\mathfrak{a} \mapsto (\mathfrak{a}, H/K)$ is defined) and we have

$$\overline{\mathfrak{a}} * E = E^{(\mathfrak{a}, H/K)} \qquad (*)$$

Moreover H is the maximal abelian unramified extension over K, i.e. the Hilbert class field of K. In particular $[K(j(E)):K]=[H:K]=h_K$.

Remark 4.2. This explains the \mathfrak{a}^{-1} in the definition of analytic action.

We start with proving (*) for a density one set of primes in K, then use Dirichlet theorem saying that every ideal class contains a prime in the set. The following relation between analytic and algebraic actions is the starting point of class field theory of CM curves.

Theorem 4.3 (Key Lemma, AEC2 II.4.2). For all but finitely degree one primes \mathfrak{p} in K, we have

$$\overline{\mathfrak{p}} * E = E^{\sigma_{\mathfrak{p}}}$$

where E is any elliptic curve in $\mathcal{E}\ell\ell(\mathcal{O}_K)$, and $\sigma_{\mathfrak{p}}$ is the Frobenius element of \mathfrak{p} (which has ambiguity that does not matter).

Proof. Idea: For elliptic curves E_1, E_2 over a finite field of characteristic p, any nonseparable map $E_1 \to E_2$ of degree p is the Frobenius map $E_1 \to E_1^{(p)}$ up to automorphism. But degree and nonseparability can be obtained from analytic picture.

Now pick a finite Galois field extension L/K and a model E_i over L for each isomorphic class in $\mathcal{E}\ell\ell(R)$, and assume that all isogenies between these E_i 's are defined onver L. Define $\varphi: E \to \overline{\mathfrak{p}}*E$ analytically by $E/\Lambda \to E/\mathfrak{p}\Lambda, z \mapsto z$. Let \mathfrak{P} is a prime of L lying over \mathfrak{p} . For p large enough, p is unramified in L and all E_i have good reduction mod \mathfrak{P} .

<u>Claim</u>: the mod- \mathfrak{P} reduction $\widetilde{\varphi}: \widetilde{E} \to \widetilde{\mathfrak{p}} * E$ has degree p and is nonseparable, so it is essentially the Frobenius.

Given the claim,

$$\widetilde{\overline{\mathfrak{p}}*E} \cong \widetilde{E}^{(p)}$$

and

$$j(\widetilde{\overline{\mathfrak{p}}*E}) = j(\widetilde{E})^p$$

Now $E^{\sigma_{\mathfrak{p}}}$ only depends on $\sigma_{\mathfrak{p}}|_{L_{ab}}$, which has no ambiguity since L_{ab} is abelian and unramified at \mathfrak{p} over K. So we can as well choose $\sigma_{\mathfrak{p}} = (\mathfrak{P}, L/K)$, and

$$j(\overline{\mathfrak{p}} * E) \equiv j(E)^p \equiv j(E^{\sigma_p}) \mod \mathfrak{P}$$

If we pick p large enough so that $\{j(E) \mod \mathfrak{P} : E \in \mathcal{E}\ell\ell(R)\}$ has no repetition, we conclude that $\overline{\mathfrak{p}} * E = E^{\sigma_p}$.

To prove the claim, we need two facts:

(a) For fractional ideals $\mathfrak{a} \subseteq \mathfrak{b}$ and \mathfrak{c} , we have $(\mathfrak{bc} : \mathfrak{ac}) = (\mathfrak{b} : \mathfrak{a})$. For a proof, note $\mathfrak{ab} \cong \mathfrak{a} \otimes_R \mathfrak{b}$ as R-modules, so

$$\frac{\mathfrak{bc}}{\mathfrak{ac}} = \frac{\mathfrak{b}}{\mathfrak{a}} \otimes_R \mathfrak{c}$$

Since \mathfrak{c} is an invertible sheaf over R, tensoring with \mathfrak{c} does not change the stalks. As $\frac{\mathfrak{b}}{\mathfrak{a}}$ is supported at finitely many points, $\frac{\mathfrak{b}}{\mathfrak{a}} \otimes_R \mathfrak{c} \cong \frac{\mathfrak{b}}{\mathfrak{a}}$ as R-modules.

(b) For two elliptic curves E_1, E_2 defined over a local field (L, \mathfrak{P}) with good reduction, the reduction is functorial:

$$E_1 \xrightarrow{\varphi} E_2$$

$$\downarrow \qquad \qquad \downarrow$$

$$\widetilde{E}_1 \xrightarrow{\widetilde{\varphi}} \widetilde{E}_2$$

Moreover, the degree is preserved: $\deg \widetilde{\varphi} = \deg \varphi$.

For the proof of degree preserving, pick a prime $\ell \neq \text{char}(L/\mathfrak{P})$, take Tate modules for the diagram above, we get

$$T_{\ell}E_{1} \xrightarrow{\varphi_{\ell}} T_{\ell}E_{2}$$

$$\downarrow \cong \qquad \qquad \downarrow \cong$$

$$T_{\ell}\widetilde{E}_{1} \xrightarrow{\widetilde{\varphi}_{\ell}} T_{\ell}\widetilde{E}_{2}$$

Thus $\deg \varphi = \det \phi_{\ell} = \det \widetilde{\phi}_{\ell} = \deg \widetilde{\varphi}_{\ell}$.

Now write $E = \mathbb{C}/\mathfrak{a}$ for a fractional ideal \mathfrak{a} of K, and consider

$$E = \mathbb{C}/\mathfrak{a} \xrightarrow{\varphi: z \mapsto z} \mathbb{C}/\mathfrak{p}^{-1} \mathfrak{a} \xrightarrow{z \mapsto \alpha z} \mathbb{C}/\mathfrak{a} = E$$

where $\alpha \in \mathfrak{p}$.

Check: Well-defined, and find the kernel and degree. (deg $\varphi = N\mathfrak{p} = p$ since \mathfrak{p} is a degree one prime over \mathbb{Q} .)

The composition is $[\alpha]$, so after reduction mod \mathfrak{P} , we have

$$\widetilde{[\alpha]}^*\widetilde{\omega} = \widetilde{[\alpha]^*\omega} = \widetilde{\alpha\omega} = 0$$

since $\alpha \in \mathfrak{p} \subseteq \mathfrak{P}$. So $[\alpha]$ is not separable.

Write $\mathfrak{b} = \alpha \mathfrak{p}^{-1}$, an integral ideal. Choose α such that \mathfrak{b} is coprime to b. Hence the second map, having degree $N\alpha$, is separable, so $\widetilde{\varphi}$ is not separable.

Proof of Main Theorem. Write H = K(j(E)). Recall the action $F : \operatorname{Gal}(\overline{K}/K) \to \mathcal{C}\ell(K)$. Then

$$\ker F = {\sigma : E^{\sigma} = E} = {\sigma \text{ fixing } j(E)} = \operatorname{Gal}(\overline{K}/H)$$

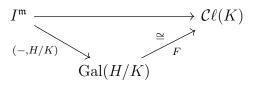
In particular H is normal over K and we have $F: \operatorname{Gal}(H/K) \hookrightarrow \mathcal{C}\ell(K)$, so H is abelian over K. Claim F is surjective. For any $\overline{\mathfrak{a}} \in \mathcal{C}\ell(K)$, we shall construct an element of $\operatorname{Gal}(H/K)$, using Frobenius, that is mapped to \mathfrak{a} . Recall class field theory:

Theorem 4.4 (Reciprocity law, CFT V.3.5). Let L/K be any abelian extension of number fields, then there is a modulus \mathfrak{m} (which is just an integral ideal when K is totally complex) such that L/K is unramified outside \mathfrak{m} and the Artin map $I^{\mathfrak{m}} \to \operatorname{Gal}(L/K)$ vanishes at $K_{\mathfrak{m},1} = \langle (\alpha) : \alpha \equiv 1 \mod \mathfrak{m} \rangle$. Here $I^{\mathfrak{m}}$ is the group of fractional ideals coprime to \mathfrak{m} . Moreover, there is a smallest such \mathfrak{m} , called the conductor of L/K.

Back to the proof of the main theorem. Now let \mathfrak{m} be the conductor of H/K. By moving lemma, we can assume \mathfrak{a} is coprime to \mathfrak{m} . By Dirichlet theorem, every ray class (cosets of $K_{\mathfrak{m},1}$ in $I^{\mathfrak{m}}$) contains a positive density of primes. Since only degree one primes contribute to density, every ray class contains infinitely many degree one primes, and we may pick one \mathfrak{p} as in Key Lemma that has the same ray class as \mathfrak{a} . By the definition of \mathfrak{m} , $(\mathfrak{a}, H/K) = (\mathfrak{p}, H/K)$, thus

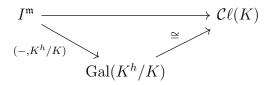
$$F(\mathfrak{a}, H/K) = F(\mathfrak{p}, H/K) = \overline{\mathfrak{p}} = \overline{\mathfrak{a}}$$

finishing the proof of surjectivity and (*) for certain choice of representative \mathfrak{a} . Thus we have $F: \operatorname{Gal}(H/K) \xrightarrow{\cong} \mathcal{C}\ell(K)$ and $[H:K] = h_K$. More importantly, we have a commutative diagram

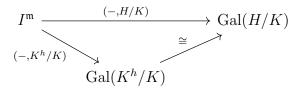


Since the Hilbert class field of K also has degree h_K , it suffices to show that H contains in it, that is, H is unramified over K. Silverman says that for any $\alpha \in K^*$, $(\alpha, H) = F^{-1}(\alpha) = 1$, so the Artin map vanishes at $K_{\mathfrak{m},1}$ even when $\mathfrak{m} = (1)$, thus the conductor has to be (1). But we don't know H/K is unramified yet, so the argument is cyclic (as the conductor is smallest \mathfrak{m} divided by all ramified primes such that Artin map vanishes on $K_{\mathfrak{m},1}$). How to fix Silverman's gap? Tell me if you have a direct way, but I came up with a solution to get around this:

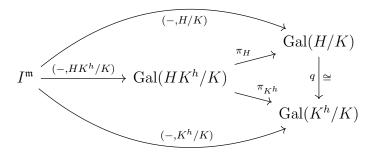
Let K^h be the Hilbert class field of K, then we have an isomorphism $\mathcal{C}\ell(K) \to \operatorname{Gal}(K^h/K)$ given by Artin map. Thus we have



Combining the two diagrams above, we get



Since K^h , H are both unramified outside \mathfrak{m} , so is HK^h and we can insert $\operatorname{Gal}(HK^h/K)$ into the diagram:



The top left and bottom left triangles commute because they are all Artin maps. By previous diagram, the outer triangle commutes, i.e. $q \circ (-, H/K) = (-, K^h/K)$. Now we have $q \circ \pi_H \circ (-, HK^h/K) = \pi_{K^h} \circ (-, HK^h/K)$. Class field theory says Artin map $(-, HK^h)$ is surjective, so we can cancel $(-, HK^h/K)$ and the right hand side triangle commutes! As q is an isomorphism,

$$\ker \pi_H = \ker \pi_{K^h}$$

and thus

$$Gal(HK^h/H) = Gal(HK^h/K^h)$$

as subgroups of $\operatorname{Gal}(HK^h/K)$. Hence $H=K^h$ is the Hilbert class field of K.

5. MAXIMAL ABELIAN EXTENSION

See [AEC2, Chapter II, §5], especially Corollary 5.7

Quick summary:

Cyclomotic Theory $\mathbb{G}_m(\mathbb{C})$ End = \mathbb{Z} , study the field \mathbb{Q} $\mathbb{C}^{ab} = \mathbb{Q}(\zeta_n)_n = \mathbb{Q}(\mathbb{G}_m(\mathbb{C})_{tor})$ End = \mathcal{O}_K , study the field K $K^{ab} = K(j(E), h(E_{tor}))$

Here h(x,y)=x in usual except $h(x,y)=x^2$ when j=1728 and $h(x,y)=x^3$ when j=0. The key property is that h must commute with automorphisms of E and for these special j's, E has more symmetry.

6. Integrality of j

See [AEC2, II.6.4]. The proof uses local class field theory, Neron–Ogg–Shafaverich criterion, and the fact that having potential good reduction implies j-invariant is integral.

Application:

Now there are nine integers (Heegner numbers) n such that $\mathbb{Q}(\sqrt{-n})$ has class number one. The largest three are n=43,67,163, all having $n\equiv 3 \mod 4$. Now $j(\mathcal{O}_{\mathbb{Q}(\sqrt{-n})})$ is integer for n=43,67,163. On the other hand,

$$j = \frac{1}{q} + 744 + 196884q + \cdots$$

where $q = \exp(2\pi i \tau)$.

Let $\tau = \frac{1 + \sqrt{n}i}{2}$, then $q = \exp(\pi i - \pi \sqrt{n}) = -\exp(-\pi \sqrt{n})$, which is a negative number very close to 0.

Thus $j \approx \frac{1}{q} + 744$, so $1/q = -\exp(\pi\sqrt{n})$ is almost an integer.