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Abstract. For a word π and integer i, we define Li(π) to be the length of the longest
subsequence of the form i(i + 1) · · · j, and we let L(π) := maxi Li(π). In this paper
we estimate the expected values of L1(π) and L(π) when π is chosen uniformly at
random from all words which use each of the first n positive integers exactly m times.
We show that E[L1(π)] ∼ m if n is sufficiently larger in terms of m as m tends towards
infinity, confirming a conjecture of Diaconis, Graham, He, and Spiro. We also show
that E[L(π)] is asymptotic to the inverse gamma function Γ−1(n) if n is sufficiently
large in terms of m as m tends towards infinity.

Keywords: multiset permutations, increasing subsequences, generating functions, ze-
roes of polynomials, probability

1 Introduction

1.1 Main Results

Given integers m and n, let Sm,n denote the set of words π which use each integer
in [n] := {1, 2, . . . , n} exactly m times, and we will refer to π ∈ Sm,n as a multiset
permutation. For example, π = 211323 ∈ S2,3. For π ∈ Sm,n and i an integer, we define
Li

m,n(π) to be the length of the longest subsequence of π of the form i(i + 1)(i + 2) · · · j,
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which we call an i-continuously increasing subsequence. We say that a subsequence is a
continuously increasing subsequence if it is an i-continuously increasing subsequence for
some i, and we define Lm,n(π) = maxi Li

m,n(π) to be the length of a longest continuously
increasing subsequence of π. For example, if π = 2341524315 then L2,5(π) = L2

2,5(π) = 4
due to the subsequence 2345, and L1

2,5(π) = 3 due to the subsequence 123.
The focus of this paper is to study L1

m,n(π) and Lm,n(π) when π is chosen uniformly
at random from Sm,n. We focus on the regime where n is much larger than m, as in the
regime where m is much larger than n, Li

m,n(π) is very likely to be its maximum possible
value n − i + 1 for all i.

We first consider E[L1
m,n(π)]. This quantity was briefly studied by Diaconis, Graham,

He, and Spiro [5] due to its relationship with a certain card game that we describe later
in this paper. They proved E[L1

m,n(π)] ≤ m + Cm3/4 log m for some absolute constant C
provided n is sufficiently large in terms of m. It was conjectured in [5] that this upper
bound for E[L1

m,n(π)] is asymptotically tight for n sufficiently large in terms of m. We
verify this conjecture in a strong form, obtaining an exact formula for limn→∞ E[L1

m,n(π)]
for any fixed m and precise estimates of this value as m tends towards infinity.

Theorem 1.1.

(a) For any integer m ≥ 1, let α1, . . . , αm be the zeroes of Em(x) := ∑m
k=0

xk

k! . If π ∈ Sm,n is
chosen uniformly at random, then

L1
m := lim

n→∞
E[L1

m,n(π)] = −1 − ∑ α−1
i e−αi . (1.1)

(b) There exists an absolute constant β > 0 such that∣∣∣∣L1
m −

(
m + 1 − 1

m + 2

)∣∣∣∣ ≤ O(e−βm).

For example, when m = 1 we have E1(x) = 1+ x and α1 = −1, implying L1
1 = −1+ e,

which can also be proven by elementary means. For m = 2 we have E2(x) = 1+ x+ x2/2
and α1 = −1 − i, α2 = −1 + i. From this Theorem 1.1(a) gives the following closed form
expression for L1

2.

Corollary 1.2.
L1

2 = e (cos(1) + sin(1))− 1.

Our next result gives precise bounds for the length of a longest continuously increas-
ing subsequence in a random permutation of Sm,n. We recall that the gamma function
Γ(x) is a function which, in particular, gives a bijection from x ≥ 1 to y ≥ 1 and which
satisfies Γ(n) = (n − 1)! for non-negative integers n.
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Theorem 1.3. If n is sufficiently large in terms of m, then

E[Lm,n(π)] = Γ−1(n) + Θ
(

1 +
log m

log(Γ−1(n))
Γ−1(n)

)
,

where Γ−1(n) is the inverse of the gamma function when restricted to x ≥ 1.

Note when m = 1 the error term of Theorem 1.3 is Θ(1), but for m ≥ 2 it is
Θ(

log m
log Γ−1(n)Γ−1(n)), which is fairly close to the main term of Γ−1(n). Thus the behavior

of E[Lm,n(π)] changes somewhat dramatically as soon as one starts to consider multiset
permutations as opposed to just permutations.

1.2 History and Related Work

Determining Li
m,n(π) and Lm,n(π) can be viewed as variants of the well-studied problem

of determining the length of the longest increasing subsequence in a random permuta-
tion of length n, and we denote this quantity by L̃n. It was shown by Logan and Shepp
[10] and Vershick and Kerov [12] that E[L̃n] ∼ 2

√
n, answering a famous problem of

Ulam. Later Baik, Deift, and Johansson [2] showed that the limiting distribution of L̃n
is the Tracy–Widom distribution. Some work with the analogous problem for multiset
permutations has been considered recently by Almeanazel and Johnson [1]. Much more
can be said about this topic, and we refer the reader to the excellent book by Romik [11]
for more information.

The initial motivation for studying L1(π) was due to its relationship to a card guess-
ing experiment introduced by Diaconis and Graham [7]. To start the experiment, one
shuffles a deck of mn cards which consists of n distinct card types each appearing with
multiplicity m. In each round, a subject iteratively guesses what the top card of the deck
is according to some strategy G. After each guess, the subject is told whether their guess
was correct or not, the top card is discarded, and then the experiment continues with
the next card. This experiment is known as the partial feedback model. For more on the
history of the partial feedback model we refer the reader to [6].

If G is a strategy for the subject in the partial feedback model and π ∈ Sm,n, we
let P(G, π) denote the number of correct guesses made by the subject if they follow
strategy G and the deck is shuffled according to π. We say that G is an optimal strategy
if E[P(G, π)] = maxG′ E[P(G′, π)], where G′ ranges over all strategies and π ∈ Sm,n is
chosen uniformly at random. Optimal strategies are unknown in general, and even if
they were known they would likely be too complex for a human subject to implement
in practice. As such there is interest in coming up with (simple) strategies G such that
E[P(G, π)] is relatively large.

One strategy is the trivial strategy which guesses card type 1 every single round,
guaranteeing a score of exactly m at the end of the experiment. A slightly better strategy
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is the safe strategy Gsa f e which guesses card type 1 every round until all m are guessed
correctly, then 2’s until all m are guessed correctly, and so on. It can be deduced from
arguments given by Diaconis, Graham, and Spiro [6] that E[P(Gsa f e, π)] is m + 1 − 1

m+1
plus an exponential error term, so the safe strategy does just a little better than the trivial
strategy.

Another natural strategy is the shifting strategy Gshi f t, defined by guessing 1 until
you are correct, then 2 until you are correct, and so on; with the strategy being defined
arbitrarily in the (very rare) event that one correctly guesses a copy of each card type.
It is not difficult to see that P(Gshi f t, π) ≥ L1

m,n(π), with equality holding provided the
player does not correctly guess n. Thus Theorem 1.1(b) shows that the expected number
of correct guesses under the shifting strategy is close to m + 1 − 1

m+2 , which is slightly
better than the trivial strategy, and very slightly better than the safe strategy.

1.3 Preliminaries

We let [n] := {1, 2, . . . , n} and let [m]n be the set of tuples of length n with entries in [m].
Whenever we write, for example, Pr[Lm,n(π) ≥ k], we will assume π is chosen uniformly
at random from Sm,n unless stated otherwise.

Throughout this paper we use several basic results from probability theory. One such
result is that if X is a non-negative integer-valued random variable, then

E[X] =
∞

∑
k=1

Pr[X ≥ k].

A crucial observation that we use throughout the text is the following.

Observation 1.4. For n ≤ k, if π ∈ Sm,k and τ ∈ Sm,n are drawn uniformly at random, then

Pr[L1
m,k(π) ≥ n] = Pr[L1

m,n(τ) = n].

Proof. For π ∈ Sm,n, let ϕ(π) ∈ Sm,k be the word obtained by deleting every letter from
π which is larger than k. Note that L1

m,n(π) ≥ k if and only if L1
m,k(ϕ(π)) = k. Moreover,

it is not difficult to see that ϕ(π) is distributed uniformly at random in Sm,k provided π

is distributed uniformly at random in Sm,n, proving the result.

2 Proof of Theorem 1.1

We say that a word π ∈ Sm,n has a complete increasing subsequence if L1
m,n(π) = n. Let

hm(n) be the number of words π ∈ Sm,n which have a complete increasing subsequence.
Horton and Kurn [9, Corollary (c)] give the following formula for hm(n).



Continuously Increasing Subsequences of Random Multiset Permutations 5

Theorem 2.1 ([9]). The number of words π ∈ Sm,n which have a complete increasing subse-
quence, hm(n), is given by

hm(n) = ∑
(i1,...,im)∈N (n,m)

(
n

i1, . . . , im

)
(mn)!

l!
(−1)l−n

∏m
j=1(m − j)!ij

,

where

l =
m

∑
j=1

jij,

N (n, m) is the set of weak compositions of n into m parts, i.e.,

N (n, m) :=

{
(i1, . . . , im) ∈ Zm

≥0

∣∣∣∣∣ m

∑
j=1

ij = n

}
,

and (
n

i1, . . . , im

)
=

n!
∏m

j=1 ij!

is a multinomial coefficient.

Notice that L1
m, defined in Equation (1.1), can be expressed in terms of hm(n) as

follows:

L1
m = lim

k→∞
E[L1

m,k(π)] = lim
k→∞

k

∑
n=1

Pr[L1
m,k(π) ≥ n] = lim

k→∞

k

∑
n=1

hm(n)
|Sm,n|

=
∞

∑
n=1

hm(n)
|Sm,n|

, (2.1)

where the third equality is due to Observation 1.4. Note that |Sm,n| = (mn)!/(m!)n.
Thus, as a consequence of Theorem 2.1, we have

hm(n)
|Sm,n|

= (−m!)n ∑
(i1,...,im)∈N (n,m)

(
n

i1, . . . , im

)
(−1)l

l!
1

∏m
j=1(m − j)!ij

, (2.2a)

= (−m!)n ∑
(i1,...,im)∈N (n,m)

(
n

i1, . . . , im

)
1
l!

m

∏
j=1

(
(−1)j

(m − j)!

)ij

. (2.2b)

Intuitively, if the 1/l! were removed from the right-hand-side expression in (2.2b),
then by using the multinomial theorem we could write this expression as an nth power,
turning (2.1) into a geometric series. The next few paragraphs formalise this idea.

We begin by replacing (−1)l by xl in the right-hand-side of (2.2a) to obtain the poly-
nomial

pm,n(x) :=(−m!)n ∑
(i1,...,im)∈N (n,m)

(
n

i1, . . . , im

)
xl

l!
1

∏m
j=1(m − j)!ij

=(−m!)n ∑
(i1,...,im)∈N (n,m)

(
n

i1, . . . , im

)
1
l!

m

∏
j=1

(
xj

(m − j)!

)ij

.
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Thus,

pm,n(−1) =
hm(n)
|Sm,n|

.

Next, we define an operator in order to remove the l! from the denominator. Let R
be a commutative ring containing Q and let Φ : R[x] → R[x] be an R-linear map defined
on the monomials by

Φ(xn) =
xn

n!
.

We can extend Φ to an R-linear map on R[[x]] → R[[x]], which we also refer to as Φ by
abuse of notation. Throughout this article, R is either C or C[[y]] for an indeterminate y,
and we shall refer to this R-linear map as Φ in both cases. Notice that Φ is invertible for
any such ring R. A key property that we use about Φ is

Φ
(

1
1 − ax

)
= Φ

(
∞

∑
i=0

(ax)i

)
=

∞

∑
i=0

(ax)i

i!
= eax. (2.3)

Consider the polynomial

qm,n(x) := Φ−1 (pm,n(x)) = (−m!)n ∑
(i1,...,im)∈N (n,m)

(
n

i1, . . . , im

)
xl

∏m
j=1(m − j)!ij

= (−m!)n ∑
(i1,...,im)∈N (n,m)

(
n

i1, . . . , im

) m

∏
j=1

(
xj

(m − j)!

)ij

.

Notice that,

qm,n(x) =

(
−m!

m

∑
j=1

xj

(m − j)!

)n

= (qm,1(x))n.

Let Pm(x, y) and Qm(x, y) be the ordinary generating functions of pm,n(x) and qm,n(x)
respectively, i.e.

Pm(x, y) :=
∞

∑
n=0

pm,n(x)yn,

Qm(x, y) :=
∞

∑
n=0

qm,n(x)yn = Φ−1 (Pm(x, y)) .

Putting everything together, we see that

L1
m = Pm(−1, 1)− 1. (2.6)

and thus it suffices to find a nice closed form expression for Pm(x, y). Note that

qm,1(x) = −m!xmEm−1(1/x),
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where we recall the polynomial Em−1(x) is defined in Theorem 1.1 by Em−1(x) =

∑m−1
k=0 xk/k!. As qm,n(x) = (qm,1(x))n, we have

Qm(x, y) =
1

1 − yqm,1(x)
=

1
1 + m!xmyEm−1(1/x)

. (2.7)

Hence,

Pm(x, y) = Φ (Qm(x, y)) = Φ
(

1
1 + m!xmyEm−1(1/x)

)
,

and thus

Pm(x, 1) = Φ
(

1
1 + m!xmEm−1(1/x)

)
= Φ

(
1

m!xmEm(1/x)

)
.

We now prove the main result of this subsection.

Proposition 2.2. Let α1, . . . , αm be the zeroes of the polynomial Em(x). The formal power series
Pm(x, 1) satisfies

Pm(x, 1) = −
m

∑
i=1

α−1
i eαix.

Proof. Let g(x) := m!xmEm(1/x). Since α−1
1 , . . . , α−1

m are the zeroes of g(x), we have

g(x) = m!(x − α−1
1 ) · · · (x − α−1

m ).

Notice that Em(x) has no repeated zeroes. This is true because, if α is a repeated zero
of Em(x), it is also a zero of its derivative E′

m(x) = Em−1(x). But then α has to be a zero
of Em(x)− Em−1(x) = xm/m!, which is only possible if α = 0, a contradiction as 0 is not
a zero of Em(x).

Thus α1, . . . , αm are pairwise distinct, and hence the zeroes of g(x) being α−1
1 , . . . , α−1

m
are also pairwise distinct. This, together with (2.7), implies that Qm(x, 1) has the partial
fraction decomposition

Qm(x, 1) =
1

g(x)
=

m

∑
i=1

1

g′
(

α−1
i

) · 1
x − α−1

i

.

The derivative of g is

g′(x) =m!
(

mxmEm(1/x)
x

− xmE′
m(1/x)
x2

)
=m!

(
mxmEm(1/x)

x
− xm(Em(1/x)− x−m/m!)

x2

)
.

Hence for any i,
g′
(

α−1
i

)
= α2

i ,
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which gives

Pm(x, 1) = Φ (Qm(x, 1)) = −
m

∑
i=1

Φ
(

1
αi(1 − αix)

)
= −

m

∑
i=1

α−1
i eαix,

where this last step used (2.3).

This proposition together with (2.6) gives Theorem 1.1(a). To prove Theorem 1.1(b),
it now suffices to show that

m

∑
i=1

α−1
i e−αi = −m − 2 +

1
m + 2

+ O(e−βm)

for some positive constant β. To do this, we follow techniques similar to those used by

Conrey and Ghosh [4] to compute
m

∑
i=1

e−αi . The strategy is to fix some 0 < γ < 1 − log 2

and to partition the αi’s into two sets based on whether or not Re(αi) ≤ γm. For further
details on how to bound ∑ α−1

i e−αi for each of these sets, we refer the reader to the full
version of our paper [3].

3 Proof of Theorem 1.3

Here we present a sketch of the proof of Theorem 1.3. The complete details can be found
in the full version of the paper [3].

The upper bound of Theorem 1.3 follows from a standard first moment argument, so
we focus on proving the lower bound. The main tool we require is a lower bound on
the probability that π ∈ Sm,n has a complete increasing subsequence, i.e. a subsequence
of the form 12 · · · n. When m = 1 this occurs with probability 1/n! exactly. We prove a
stronger bound for m ≥ 2.

Proposition 3.1. For n sufficiently large in terms of m ≥ 2, we have

Pr[Lm,n(π) = n] ≥ (m/1.03)n

2n · n!
.

Proposition 3.1 is proved by using an argument inspired by coding theory and some
careful analysis. This allows us to prove our main result.

Sketch of Proof of Theorem 1.3. The upper bound follows from a standard first moment
argument. To prove the lower bound, fix an integer k. For 0 ≤ j < ⌊n/k⌋, let Aj(π) be
the event that π contains the subsequence (jk + 1)(jk + 2) · · · ((j + 1)k).

Claim 3.2. We have the following:
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(a) If any Aj(π) event occurs, then Lm,n(π) ≥ k.

(b) The Aj(π) events are mutually independent.

(c) For all j, we have Pr[Aj(π)] = Pr[Lm,k(σ) = k] where σ ∈ Sm,k is chosen uniformly at
random.

Proof. Part (a) is clear, and (b) follows from the fact that the events Aj(π) involve the
relative ordering of disjoint sets of letters. For (c), one can consider the map which sends
π ∈ Sm,n to σ ∈ Sm,k by deleting every letter in π except for (jk + 1), . . . , ((j + 1)k)
and then relabeling jk + i to i. It is not difficult to see that Aj(π) occurs if and only if
Lm,k(σ) = k occurs, and that π being chosen uniformly at random implies σ is chosen
uniformly at random.

Let pk = Pr[Lm,k(σ) = k]. The claim above implies that for all k we have

Pr[Lm,n(π) ≥ k] ≥ Pr
[⋃

Aj(π)
]
= 1 − Pr

[⋂
Ac

j (π)
]
= 1 − (1 − pk)

⌊n/k⌋. (3.1)

Because E[Lm,n(π)] = ∑ Pr[Lm,n(π) ≥ k], inequality (3.1) shows that we can bound this
expectation from below by by bounding pk from below. This can be done by utilizing
Proposition 3.1, and from this one can show that the desired bound holds after perform-
ing a careful analysis.

4 Concluding Remarks

In this paper we solved a conjecture of Diaconis, Graham, He, and Spiro [5] by asymptot-
ically determining E[L1

m,n(π)] provided n is sufficiently large in terms of m. Using sim-
ilar ideas, it is possible to compute the asymptotic limit of the rth moment E[L1

m,n(π)r]
for any fixed r. Based off of computational evidence for these higher moments, we
conjecture the following:

Conjecture 4.1. For all r ≥ 1, if n is sufficiently large in terms of m, then

E[(L1
m,n(π)− µ)r] = crm⌊r/2⌋ + O(m⌊r/2⌋−1),

where µ = E[L1
m,n(π)] and

cr =


r!

2r/2(r/2)!
r even,

r!
3 · 2(r−1)/2((r − 3)/2)!

r odd.
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One can show that the standard deviation σ of L1
m,n(π) is asymptotic to m1/2. Thus,

this conjecture would imply that the standardized moments (
L1

m,n(π)−µ
σ )r converge to

0 for r odd and to r!
2r/2(r/2)! for r even. These are exactly the moments of a standard

normal distribution, and actually this fact would imply that (L1
m,n(π)− µ)/σ converges

in distribution to a standardized normal distribution, see for example [8, Corollary 21.8].
Perhaps a first step towards proving Conjecture 4.1 would be to get a better under-

standing of the (non-centralized) moments E[L1
m,n(π)r], and to this end we conjecture

the following:

Conjecture 4.2. For all r ≥ 1, if n is sufficiently large in terms of m, then

E[L1
m,n(π)r] = mr +

(
r + 1

2

)
mr−1 + O(mr−2).

We can prove that the rth moment is asymptotic to mr, but we do not know how
to determine the coefficient of mr−1. We were unable to observe any pattern for the
coefficients of lower order terms.

In this paper, we considered continuously increasing subsequences in multiset per-
mutations, and it is natural to consider other types of subsequences in multiset permu-
tations. Perhaps the most natural to consider is the following:

Question 4.3. For π ∈ Sm,n, let L̃m,n(π) denote the length of a longest increasing subsequence
in π. What is E[L̃m,n(π)] asymptotic to when m is fixed?

When m = 1 it is well known that E[L̃1,n(π)] ∼ 2
√

n (see [11]), so Question 4.3 is a
natural generalization of this classical problem. See also recent work of Almeanazel and
Johnson [1] for some results concerning the distribution of L̃m,n(π).
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