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Abstract. We advance a non-abelian variant of the classical Mordell-Lang conjecture in
the context of division algebras. We also prove a first instance for our conjecture and also
show through examples the relevance of the hypotheses in our question.

1. Introduction

We start by stating our notation for division algebras in Section 1.1 and also introduce
Definition 1.1, which is key for our result.

1.1. Notation. Throughout this paper, let N denote the set of nonnegative integers, K be
a field of characteristic 0, and D be a finite-dimensional division algebra over K. For each
element f ∈ D, we define its norm by

(1.1) |f | := NormK(f)/K(f)[D:K(f)] ∈ K.

We let ` := [D : K]. Then, geometrically, D can be identified with the K-points of the
`-dimensional affine space A`(K). Indeed, we let y1, . . . , y` be a given K-basis for D and then

each point x ∈ D is written uniquely as x =
∑`

i=1 xi · yi for some xi ∈ K; thus, x ∈ D can

also be viewed as the point (x1, . . . , x`) ∈ A`(K). Therefore, a (closed) K-subvariety1 V of D
is given by a system of polynomial equations

(1.2) P1(x1, . . . , x`) = · · · = Pm(x1, . . . , x`) = 0

for some given polynomials P1, . . . , Pm ∈ K[t1, . . . , t`]. A point of D, written as
∑`

i=1 xi · yi
(for some x1, . . . , x` ∈ K), lies on V if and only if (x1, . . . , x`) satisfies equation (1.2).

We denote by H the usual quaternion algebra over R, i.e., H := R ⊕ R · i ⊕ R · j ⊕ R · k,
with the standard multiplication law

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

We also denote by Ha the subring of algebraic quaternions, i.e., the set of all elements a+ b ·
i+ c · j + d · k ∈ H with a, b, c, d ∈ Q ∩ R.

Definition 1.1. (i) We say a collection of elements s1, . . . , sr ∈ K× is multiplicatively
independent if n1, . . . , nr ∈ Z and sn1

1 · · · · · snr
r = 1 imply n1 = · · · = nr = 0.

(ii) We say a collection of elements f1, . . . , fr ∈ D× has multiplicatively independent
norms if |f1|, . . . , |fr| are multiplicatively independent.

1In this paper, a subvariety always refers to a closed subvariety.

1



2 DRAGOS GHIOCA AND YIFENG HUANG

1.2. Our results. Motivated by the classical S-unit equation (see [Sch90]) and also by the
recent work of the second author on arithmetic questions in the noncommutative setting of
division algebras [Hua20], we propose the following conjecture.

Conjecture 1.2. Let K be a field of characteristic 0, let D be a finite dimensional division
algebra over K, let Γ be a subgroup of D× generated by finitely many elements with multi-
plicatively independent norms, and V be a K-subvariety of D not passing through 0. Then

(1.3) |V ∩ Γ| <∞.

Example 1.6 shows that in the absence of any hypothesis on the norms of the generators
of Γ, the conclusion in Conjecture 1.2 may no longer be valid.

We view our Conjecture 1.2 as a non-abelian version of the classical Mordell-Lang conjecture
(see Remark 1.9).

Our main result is the following weaker version of Conjecture 1.2 (see also our Theorem 4.2).

Theorem 1.3. Let K,D be as above, V be a K-subvariety of D not passing through zero,
f1, . . . , fr ∈ D×, and Γ be the set:

(1.4) Γ = {fn1
1 · · · · · f

nr
r : n1, . . . , nr ∈ Z} ⊆ D×.

Then the following statements hold:

(i) If D is a field and V is a K-hyperplane, then |V ∩ Γ| <∞.
(ii) If f1, . . . , fr have multiplicatively independent norms, then |V ∩ Γ| <∞.

The setting from Theorem 1.3 is also inspired by the Dynamical Mordell-Lang problem for
finitely many endomorphisms (see Remark 1.10).

Using a result of the second author [Hua20, Thm. 1.2], a slight variant of our Theorem 1.3
(see Theorem 4.2) yields the following result on a unit equation, which also proves another
special case of [Hua20, Conj. 1.4]. In order to state our Theorem 1.5, we introduce the
following notation.

Notation 1.4. For a division algebra D over a field K of characteristic 0, given f1, . . . , fr ∈
D×, we let 〈f1, . . . , fr〉 denote the subsemigroup of D× generated by f1, . . . , fr, and let Γf1,...,fr
be the subset:

{fn1
1 · · · · · f

nr
r : n1, . . . , nr ∈ N} ⊆ 〈f1, . . . , fr〉.

Theorem 1.5. Let Ha be the ring of algebraic quaternions, let a, a′, b, b′ be fixed nonzero
algebraic quaternions, let f1, . . . , fk ∈ D× and g1, . . . , g` ∈ D× be elements of norm greater
than 1. Then the unit equation

(1.5) afa′ + bgb′ = 1

has only finitely many solutions with f ∈ Γf1,...,fk and g ∈ 〈g1, . . . , g`〉.

1.3. Remarks regarding our results. We start by noting that in Conjecture 1.2, one needs
to impose the condition the the variety V does not pass through the origin since otherwise
there will be many examples for which the intersection (1.3) is infinite. Indeed, we can take
D = Ha, Γ be the cyclic subgroup generated by 2, and V be the hyperplane consisting of all
points x1 + x2 · i+ x3 · j + x4 · k ∈ Ha with x2 = 0; then the entire group Γ is contained in V .

Furthermore, the norm condition (or a version thereof) is necessary in Conjecture 1.2, as
shown by the following example.
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Example 1.6. Take K = R, D = H, V = {a + bi + cj + dk : a − d = 1}, f1 = 3 + 4i, and
f2 = (3− 4j)/25. An easy computation shows that for each positive integer n, there are some
integers an and bn such that:

fn1 = an + bni and fn2 =
an − bnj

52n
,

where a2
n + b2n = 52n. Then

fn1 · fn2 =
a2
n + anbni− anbnj − b2nk

52n

and so, fn1 f
n
2 ∈ V for all n ∈ N; furthermore, these elements are all distinct. On the other

hand, we also note that the hypothesis from Theorem 1.3 is not verified since |f1| · |f2| = 1,
i.e., f1 and f2 do not have multiplicatively independent norms.

Furthermore, the norm condition from Conjecture 1.2 is necessary even assuming (D×, ·)
is abelian, i.e., D/K is a finite field extension, as shown by the following example.

Example 1.7. We can take K = R and D = R(i) = C; each element z ∈ D is then uniquely
represented as x+i·y with x, y ∈ K. Then we may consider the variety V given by the equation
x2 + y2 = 1; clearly, V is a K-variety which does not pass through 0. On the other hand,
for any finitely generated subgroup Γ consisting of points in D of norm 1, we have Γ ⊂ V ,
thus showing that one cannot expect the intersection V ∩ Γ be finite even when V avoids 0,
unless we assume a further condition on the generators of Γ. Note that in this example, each
element of Γ has norm 1, which is the exact opposite of what we ask in Definition 1.1.

A similar construction as in Example 1.7 can be made also in a noncommutative setting;
for example, one could consider K = R, D = H, V = S3 (i.e., the variety consisting of all
points of norm equal to 1) and then pick any Γ ⊂ V . Once again, the intersection V ∩ Γ is
infinite even though V does not pass through 0; however, the elements of Γ have all norm
equal to 1.

Remark 1.8. Example 1.7 shows that the conclusion from Theorem 1.3 (i) does not extend to
arbitrary K-varieties V (not passing through 0). Also, Example 1.7 shows that the conclusion
from Theorem 1.3 (ii) does not hold when f1, . . . , fr do not have multiplicatively independent
norms.

Next, our Remarks 1.9 and 1.10 explain why we view our Conjecture 1.2 and Theorem 1.3
as non-abelian variants of the Mordell-Lang conjecture.

Remark 1.9. Our Conjecture 1.2 has its genesis in the classical Mordell-Lang conjecture
(proven by Faltings [Fal91] in the case of abelian varieties, and by Vojta [Voj96] for all semia-
belian varieties). We were motivated by finding the points in common for an algebraic variety
and a finitely generated group in a non-abelian setting; note that the classical Mordell-Lang
conjecture asks precisely this question in the commutative setting of semiabelian varieties.
Finding analogue statements to this classical problem to more general algebraic groups, be-
yond the world of semiabelian varieties is a difficult question in general (for more details, see
[GHST19]).

It is tempting to relax the hypotheses in our Conjecture 1.2 and predict that if the corre-
sponding intersection V ∩Γ is infinite, then this is always explained by finitely many cosets of
algebraic subgroups of D× which live inside the variety V . However, Example 1.6 is a warning
that this is not always the case.
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Remark 1.10. Our Conjecture 1.2 was also inspired by the Dynamical Mordell-Lang Conjec-
ture (see [BGT16] for a comprehensive discussion of this still open question from arithmetic
dynamics).

Indeed, the Dynamical Mordell-Lang Conjecture predicts the shape of the intersection be-
tween a subvariety of some given ambient algebraic variety X endowed with an endomorphism
Φ with an orbit (under Φ) of a point in X; for its precise statement, see [GT09]. Further-
more, one could consider an extension of the Dynamical Mordell-Lang Conjecture considering
finitely many endomorphisms Φi : X −→ X (for i = 1, . . . , r) and for a given subvariety
V ⊆ X and a given point α ∈ X, then study the set S of r-tuples (n1, . . . , nr) ∈ Nr for which

(Φ◦n1
1 ◦ · · · ◦ Φ◦nr

r ) (α) ∈ V.
It is natural then to ask under which hypotheses, the above set S is finite, or perhaps, it is
a union of a finite set with finitely many cosets of subsemigroups of Nr. This problem turns
out to be very subtle (even in the case when the ambient space X is a semiabelian variety
and each Φi is a group endomorphism of X), as it was explained in [GTZ11].

Note that in Theorem 1.3, one could consider the maps Φi : D −→ D given by x 7→ fi · x
(for i = 1, . . . , r) and then the conclusion in Theorem 1.3 is another instance of the above
Dynamical Mordell-Lang question (for finitely many maps), but this time in a non-abelian
setting.

1.4. Plan for our paper. In Section 2 we state a couple of useful facts that will be used in
our proof of Theorem 1.3. Then we prove Theorem 1.3 in Section 3. Finally, in Section 4,
we state and prove Theorem 4.2 and then derive Theorem 1.5 as an easy consequence of
Theorem 4.2 coupled with [Hua20, Thm. 1.2].

2. Preliminaries

In this Section 2, we gather a couple of technical results to be employed in our proofs.

2.1. The classical Mordell-Lang. Our key tool is the classical Mordell-Lang theorem for
tori, proven by Laurent. We state the following version of it, that can be deduced immediately
from [Lau84].

Theorem 2.1 (Mordell-Lang). Let N, r ∈ N, let L be a field of characteristic 0, let V be an
algebraic subvariety of GN

m, and ϕ : Zr → GN
m(L) be a group homomorphism. Then the set

{(n1, . . . , nr) : ϕ(n1, . . . , nr) ∈ V (L)} is a finite union of cosets of subgroups of Zr.

2.2. Cosets of subgroups of Zm. The following result shows that always the infinite inter-
section of Nm with a coset of a subgroup H of Zm is explained by the existence of a nontrivial
element in H ∩ Nm.

Lemma 2.2. If H is a subgroup of Zm such that a coset of it c+H has infinite intersection
with Nm, then H must contain a nontrivial element from Nm.

Proof. The proof is by induction on m, where the case m = 1 is trivial. So we assume the
statement is true for m and then prove it for m+ 1.

We pick an element x1 ∈ (c+H)∩Nm+1. If there exists another element x2 ∈ (c+H)∩Nm+1

such that each entry of x2 is not less than the corresponding entry of x1, then the difference
x2 − x1 is in H and as desired. So, let us assume that for each element x2 6= x1 from
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(c+H) ∩Nm+1, there exists some entry in x2 less than the corresponding entry from x1. By
the pigeonhole principle, we may assume that there exist infinitely many elements x2, x3, · · · ∈
(c+H)∩Nm+1 such that the first entry in xi (for i ≥ 2) is smaller than the first entry in x1.
Then by another application of the pigeonhole principle, we may assume x2, x3, . . . have the
same first entry, which we denote by j.

Now, consider the intersection (c+H) ∩ ({j} × Zm); this is another coset of a subgroup
of Zm+1 (because it is the intersection of two cosets of subgroups), which we call c1 + H1.
Because all elements of c1 +H1 have their first entry equal to j, all elements in H1 have their
first entry equal to 0. Furthermore, H1 is a subgroup of H.

Now (c1+H1)∩Nm+1 lies in {j}×Nm and contains infinitely many elements since it contains
x2, x3, . . . . Thus letting π : Zm+1 → Zm be the projection onto the last m coordinates, we
can apply the inductive hypothesis to π(c1 + H1), which is a coset c2 + H2 of a subgroup in
Zm, and conclude that H2 contains a nontrivial element in Nm. In particular, H1 contains
an element x0 whose last m coordinates are nonnegative integers, not all equal to 0. But
elements of H1 all have their first coordinate equal to 0, so x0 ∈ H1 ⊆ H is as desired in the
conclusion of Lemma 2.2. �

2.3. Reduction to hypersurface case. The following observation shows that in Theo-
rem 1.3 we may assume without generality that V is a hypersurface not containing 0.

Lemma 2.3. Let K be a field, A`(K) be the `-dimensional affine space, and V be a K-
subvariety of A`(K) not passing through 0 = (0, . . . , 0). Then there is a K-hypersurface of
A`(K) not passing through 0 that contains V .

Proof. Say (1.2) is the equation that cuts out V . Since 0 /∈ V , there is 1 ≤ j ≤ m such that
Pj(0) 6= 0. The hypersurface cut out by Pj(x1, . . . , xl) = 0 then does the job. �

3. Proof of Theorem 1.3

In this Section 3, we work under the hypotheses of Theorem 1.3. We start with a useful
reduction for the case (i) in Theorem 1.3.

3.1. In case (i) of Theorem 1.3, it suffices to assume f1, . . . , fr are multiplicatively
independent. We assume in this Section 3.1 that (D×, ·) is abelian and therefore, D/K is
a finite field extension. Thus, Γ is actually the subgroup of (D×, ·) spanned by f1, . . . , fr.
So, since it is a finitely generated abelian group, we have that Γ is the direct product of a
torsion-free finitely generated abelian subgroup Γ0 with a finite torsion subgroup Γ1. Thus

(3.1) V ∩ Γ =
⋃
γ∈Γ1

V ∩ (γ · Γ0) =
⋃
γ∈Γ1

γ ·
((
γ−1 · V

)
∩ Γ0

)
,

where for each γ ∈ D×, the variety Vγ := γ−1 ·V is another K-hyperplane not passing through
the origin.

So, equation (3.1) reduced case (i) of Theorem 1.3 to the intersection between a finitely
generated torsion-free subgroup of D× with a subvariety not passing through 0 ∈ D. There-
fore, we may assume from now on, that in case (i) of Theorem 1.3, we have that the elements
f1, . . . , fr ∈ D× are multiplicatively independent (again, note that in this case (i), we have
that D is itself a field).
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3.2. Conversion to an exponential equation. We continue with our proof of Theorem 1.3;
this argument now is common to both parts (i) and (ii) in Theorem 1.3.

As the first new ingredient in our argument, we convert the equation

(3.2) fn1
1 · · · · · f

nr
r ∈ V

into an exponential equation in a commutative setting, to be detailed in this section. Fix an
algebraic closure K of K. By looking at the subfields K(fi) of D, there are subfields Li of K
that are finite extensions of K, embeddings κi : Li → D as K-algebras, and elements gi ∈ Li
such that κi(gi) = fi.

By Lemma 2.3, we may assume from now on that V is a K-hypersurface of D not passing
through 0. Thus, there is M ≥ 1 and for each 1 ≤ d ≤ M a d-fold K-multilinear form
Θd : D × · · · ×D → K such that V is cut out by the equation

(3.3) Θ1(z) + Θ2(z, z) + · · ·+ ΘM (z, . . . , z) = 1.

For each 1 ≤ d ≤M , define a dr-multilinear map θd : (L1 × · · · × Lr)×d → K by

(3.4) θd(z
(1)
1 , . . . , z(1)

r , . . . , z
(d)
1 , . . . , z(d)

r ) := Θd(κ1(z
(1)
1 ) . . . κr(z

(1)
r ), . . . , κ1(z

(d)
1 ) . . . κr(z

(d)
r )).

Then the equation (3.2) becomes
(3.5)
θ1(gn1

1 , . . . , gnr
r ) + θ2(gn1

1 , . . . , gnr
r , g

n1
1 , . . . , gnr

r ) + · · ·+ θM (gn1
1 , . . . , gnr

r , . . . , g
n1
1 , . . . , gnr

r ) = 1.

To better understand the exponential equation (3.5), we rewrite the multilinear maps θd
more explicitly. For 1 ≤ i ≤ r, let Gi = {σi : Li → K} be the set of K-embeddings from Li
to K. We have |Gi| = [Li : K]. From basic Galois theory, Gi forms a K-basis of the K-vector
space of K-linear maps HomK(Li,K). Therefore, the K-vector space

(3.6) HomK((L1 ⊗K · · · ⊗K Lr)
⊗Kd,K) = (HomK(L1,K)⊗K · · · ⊗K HomK(Lr,K))⊗Kd

has a basis given by Gd = G × . . . G (d-fold), where G := G1 × · · · × Gr. Here, (·)⊗Kd

denotes the d-fold tensor product over K. As a result, there are elements aσ(1),...,σ(d) indexed

by (σ(1), . . . , σ(d)) ∈ Gd, uniquely determined by θd, such that we have for zi ∈ Li

(3.7) θd(z1, . . . , zr, . . . , z1, . . . , zr) =
∑

σ(1),...,σ(d)∈G

aσ(1),...,σ(d)zσ
(1)
. . . zσ

(d)
,

where for any σ = (σ1, . . . , σr) ∈ G, we define zσ := σ1(z1) . . . σr(zr). (The product takes
place in K, which we have fixed.) If n = (n1, . . . , nr) is in Zr, then (3.7) gives

(3.8) θd(g
n1
1 , . . . , gnr

r , . . . , g
n1
1 , . . . , gnr

r ) =
∑

σ(1),...,σ(d)∈G

aσ(1),...,σ(d)gn,σ
(1)
. . . gn,σ

(d)
,

where

(3.9) gn,σ :=

r∏
i=1

σi(gi)
ni .

Also, we note that in the case D/K is a finite field extension (which is the part (i) in
Theorem 1.3), the equation (3.8) can be written even more explicit since we can take gi = fi
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for each i = 1, . . . , r (since already D/K is a finite field extension), and we may apply the
argument leading to (3.7) directly to Θd, yielding its r = 1 analog:

(3.10) Θd(z, . . . , z) =
∑

σ(1),...,σ(d)∈G

aσ(1),...,σ(d)σ(1)(z) . . . σ(d)(z),

where G is now simply the set of K-embeddings from D to K. Therefore, the counterpart of
equation (3.8) is simply the equation:

(3.11) θd(f
n1
1 , . . . , fnr

r ) =
∑

σ(1),...,σ(d)∈G

aσ(1),...,σ(d)fn,σ
(1)
. . . fn,σ

(d)
,

where fn,σ :=
∏r
i=1 σ(fi)

ni .

In conclusion, the equation (3.2) (in both parts (i) and (ii)) is converted to an exponential
equation

(3.12)

M∑
d=1

∑
σ(d,1),...,σ(d,d)∈G

aσ(d,1),...,σ(d,d)gn,σ
(d,1)

. . . gn,σ
(d,d)

= 1

for some coefficients aσ(d,1),...,σ(d,d) ∈ K that are determined by the equation of the hypersurface

V . Of course, aσ(d,1),...,σ(d,d) cannot be arbitrary: since θd actually lands in K rather than K,

the collection {aσ(d,1),...,σ(d,d)}σ(d,j)∈G must be “Galois invariant” in a suitable sense for each
d. However, we will not need it in this paper.

For future convenience, we further compactify the notation. Let G := G tG2 t · · · tGM ,
so a typical element of G is of the form σ = (σ(d,1), . . . , σ(d,d)) for some 1 ≤ d ≤ M that is
part of the data in σ. For this σ, define

(3.13) gn,σ := gn,σ
(d,1)

. . . gn,σ
(d,d)

.

Then we may rewrite (3.12) compactly as

(3.14)
∑
σ∈G

aσg
n,σ = 1.

3.3. Reduction of our question to a classical Mordell-Lang type problem. The fol-
lowing lemma is instrumental for our proof of Theorem 1.3.

Lemma 3.1. Let K be a field of characteristic zero, D be a finite-dimensional division algebra
over K, V be a K-subvariety of D, and ϕ : Zr → D× be a given map of the form

(3.15) ϕ(n1, . . . , nr) = fn1
1 . . . fnr

r ,

where r ≥ 1 is fixed and f1, . . . , fr are also fixed elements of D×. Then ϕ−1(V ) is a finite
union of cosets of subgroups of Zr.

Proof. Since V is the intersection of finitely many hypersurfaces, and the intersection of
cosets of subgroups of Zr is a coset of some subgroup, it suffices to prove the case where V
is a hypersurface. Using §3.2 but without the assumption that V does not pass through 0,
ϕ−1(V ) is the set of n = (n1, . . . , nr) that solves the equation

(3.16)
∑
σ∈G

aσg
n,σ = ε,
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with the notation G, aσ, and gn,σ as in §3.2, and where ε = 0 or 1 depending on whether V

passes through 0 or not. Consider the torus T := (K
×

)|G| with coordinates indexed by G,
and the map ψ : Zr → T defined by

(3.17) ψ(n) := (gn,σ)σ∈G.

Then it is clear from the definition that ψ is a group homomorphism. Consider a K-subvariety
of T defined by

(3.18) W :=

{
(zσ)σ∈G :

∑
σ

aσzσ = ε

}
∩ T.

The construction implies ϕ−1(V ) = ψ−1(W ), so the desired conclusion follows from Theo-
rem 2.1. �

3.4. Conclusion of our proof for Theorem 1.3. We bring back the assumption that V
is a hypersurface not passing through 0. Recall from §3.2 that the equation fn1

1 . . . fnr
r ∈ V

can be rewritten as

(3.19)
∑
σ

aσg
n,σ = 1;

furthermore, in part (i) of Theorem 1.3, the above equation (3.19) becomes even more explicit:

(3.20)
∑
σ

aσf
n,σ = 1.

Moreover, the conclusion of Lemma 3.1 states that the set of n ∈ Zr that solve (3.19) is a
finite union of cosets of Zr.

Assume the contrary of the conclusion of Theorem 1.3, i.e., |V ∩ Γ| = ∞. Then (3.19) is
solved by infinitely many n ∈ Zr, so one of the aforementioned cosets, say c + H, must be
infinite. Hence, H contains a nonzero element x ∈ Zr. Thus (3.19) restricted to c+Zx yields

(3.21)
∑
σ

aσg
c+nx,σ = 1,

or

(3.22)
∑
σ

aσg
c,σ(gx,σ)n = 1,

for all n ∈ Z. By elementary facts about the Vandermonde matrix (see also [GS23, Lemma 2.3]),
sequences αn for distinct α ∈ K are K-linearly independent. It follows that there exists σ ∈ G
such that gx,σ = 1, or

(3.23)

d∏
j=1

r∏
i=1

σ
(d,j)
i (gi)

xi = 1

for some 1 ≤ d ≤M and σ(d,1), . . . , σ(d,d) ∈ G.

Furthermore, assuming we are in part (i) of Theorem 1.3, since we know M = 1, that we
could take gi = fi for each i = 1, . . . , r (see also equation (3.20)), and that we can take G to
be the set of K-embeddings σ : D −→ K, the equation (3.23) reads:

(3.24)

r∏
i=1

σ(fi)
xi = 1,
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for some suitable K-embedding σ : D −→ K. In particular, equation (3.24) yields

(3.25)
r∏
i=1

fxii = 1.

Equation (3.25) already provides the desired contradiction in case (i) of Theorem 1.3 because
the fact that not all integers xi are equal to 0 in equation (3.25) contradicts the fact that
f1, . . . , fr are multiplicatively independent (see our reduction from Section 3.1).

Next, we work towards obtaining the conclusion in part (ii) of Theorem 1.3. The following
lemma provides the desired contradiction; furthermore, this next result will also be used in
our proof of Theorem 4.2.

Lemma 3.2. With the above notation, assume equation (3.23) holds for some x1, . . . , xr ∈ Z.
Then there exists a positive integer b such that

(3.26)
r∏
i=1

|fi|bxi = 1.

Proof of Lemma 3.2. We take a large enough finite extension L/K in K such that L ⊇ Li
(see also our notation from Section 3.2) and [L : K] is divisible by [D : K]; say that [L : K] =
m · [D : K] for some positive integer m. Taking the norm NormL/K on both sides of (3.23)
yields

(3.27) 1 =
r∏
i=1

NormL/K(gi)
dxi =

r∏
i=1

NormLi/K(gi)
[D:Li]dmxi .

Using Definition 1.1 and setting b = dm, we obtain precisely the content of the desired
equation (3.26). �

Since not all integers xi from equation (3.26) (see Lemma 3.2) are equal to 0 (while b is a
positive integer), we see that equation (3.26) contradicts the assumption that f1, . . . , fr have
multiplicatively independent norms. This contradiction finishes our proof of part (ii) and
therefore, concludes our proof for Theorem 1.3.

4. Proofs of two other results related to Theorem 1.3

In Section 4.1, we state and prove Theorem 4.2; then in Section 4.2, we prove Theorem 1.5.

4.1. A variant of Theorem 1.3. In order to state Theorem 4.2, we need the following
definition.

Definition 4.1. We say a collection of elements f1, . . . , fr ∈ D× has semimultiplicatively
independent norms if whenever |f1|n1 · · · |fr|nr = 1 for some n1, . . . , nr ∈ N, then we must
have n1 = · · · = nr = 0.

Note that Definition 4.1 asks for a weaker condition than Definition 1.1 (ii). Furthermore,
the condition from Definition 4.1 that the elements fi have semimultiplicatively independent
norms generalizes the following setting. Let K = R, and D = H be the usual Hamilton quater-
nions. Then |·| is the fourth power of the Euclidean length on H. A collection f1, . . . , fr ∈ H×
then automatically has semimultiplicatively independent norms as long as their Euclidean
lengths are all > 1. This condition already shows up in [Hua20].
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Theorem 4.2. Let, as before, D be a finite dimensional division algebra over the field K of
characteristic 0, let V be a K-subvariety of D not passing through the origin, let f1, . . . , fr ∈
D× have semimultiplicatively independent norms, and let Γ := Γf1,...,fr be the set:

(4.1) Γ = {fn1
1 . . . fnr

r : n1, . . . , nr ∈ N} ⊆ D×.
Then |V ∩ Γ| <∞.

Since both the hypothesis but also the conclusion in Theorem 4.2 are weaker than their
counterparts from Theorem 1.3, neither theorem implies the other one.

Proof of Theorem 4.2. Our proof follows the exact same steps as the proof of Theorem 1.3
from Section 3. In particular, we re-state the condition that

∏r
i=1 f

ni
i ∈ V for some (n1, . . . , nr) ∈

Nr as the equation:

(4.2)
∑
σ

aσg
n,σ = 1,

for some suitable aσ ∈ K, where gn,σ is defined as in equation (3.13) (see Section 3.2). Then
assuming there exist infinitely many n = (n1, . . . , nr) ∈ Nr such that equation (4.2) holds,
once again using Lemma 3.1 (as in Section 3.4) we derive the existence of a coset c+H of a
subgroup H ⊆ Zr with the property that for each of the infinitely many n ∈ (c + H) ∩ Nr,
we have that equation (4.2) holds. An application of Lemma 2.2 yields then the existence of
some nontrivial x := (x1, . . . , xr) ∈ Nr with the property that for each n ∈ N, we have that

(4.3)
∑
σ

aσg
c,σ(gx,σ)n = 1.

Once again applying [GS23, Lemma 2.3] (which is a basic application of the classical Vander-
monde determinants), we obtain that

(4.4)
r∏
i=1

d∏
j=1

σ
(d,j)
i (gi)

xi = 1,

for some 1 ≤ d ≤M and suitable maps σ
(d,j)
i as in Section 3.2. Finally, using Lemma 3.2, we

conclude that there exists a positive integer b such that

(4.5)

r∏
i=1

|fi|bxi = 1.

Since each xi ∈ N, but not all of them are equal to 0, equation (4.5) yields a contradiction to
our hypothesis that f1, . . . , fr have semimultiplicatively independent norms. This contradic-
tion shows that we must have finitely many r-tuples (n1, . . . , nr) ∈ Nr with the property that
fn1

1 · · · fnr
r ∈ V , thus concluding our proof of Theorem 4.2. �

4.2. Proof of Theorem 1.5. Finally, we can prove Theorem 1.5 as a consequence of Theo-
rem 4.2.

So, we work under the hypotheses of Theorem 1.5. Then, by [Hua20, Thm. 1.2], it suffices
to show that |afa′| = |1 − afa′| has only finitely many solutions with f ∈ Γf1,...,fk . But we
have seen in [Hua20, §5] that |afa′| = |1− afa′| is equivalent to f ∈ V for a certain (R ∩ Q̄)-
hyperplane V of Ha not passing through 0. By Theorem 4.2 and the fact that f1, . . . , fk have
norms > 1 (and thus have semimultiplicatively independent norms), the desired finiteness
follows.
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