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Abstract

Let ζ be a fixed nonzero element in a finite field Fq with q elements. In this article,
we count the number of pairs (A,B) of n × n matrices over Fq satisfying AB = ζBA by
giving a generating function. This generalizes a generating function of Feit and Fine that
counts pairs of commuting matrices. Our result can be also viewed as the point count of
the variety of modules over the quantum plane xy = ζyx, whose geometry was described
by Chen and Lu.

1 Introduction

1.1 Main results

Fix a nonzero element ζ in Fq, the finite field with q elements. Let ord(ζ) denote the smallest
positive integer m such that ζm = 1 in Fq. We define the set of Fq-points of the ζ-commuting
variety to be

Kζ,n(Fq) := {(A,B) ∈ Matn(Fq)×Matn(Fq) : AB = ζBA}. (1.1)

The ζ-commuting variety Kζ,n can be viewed as the variety of n-dimensional modules over
the algebra of the quantum plane, namely, the noncommutative associate algebra in variables X
and Y such that XY = ζY X. The geometry of the ζ-commuting variety was studied by Chen
and Lu [3], where explicit descriptions of its irreducible components and of a GIT quotient were
given. The combinatorics of the ζ-commuting has also been studied when ζ = 1: Feit and Fine
[6] gave an explicit formula for the point count of the commuting variety (namely, K1,n) over a
finite field, and Bryan and Morrison [2] proved that the “same” formula computes the motivic
class of the commuting variety (over C) in the Grothendieck ring of varieties.

The focus of this paper is to count the cardinality of Kζ,n(Fq) for ζ in general. As a special
case, the cardinality of K1,n(Fq), the set of pairs of commuting matrices, was determined by Feit
and Fine [6] in the form of a generating function. We give a generating function for |Kζ,n(Fq)|
that generalizes the ζ = 1 case.
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Theorem 1.1. Let m = ord(ζ); in other words, ζ is a primitive m-th root of unity of Fq. We
have the following identity of power series in x:

∞∑
n=0

|Kζ,n(Fq)|
(qn − 1)(qn − q) . . . (qn − qn−1)

xn =
∞∏
i=1

Fm(x
i; q), (1.2)

where

Fm(x; q) :=
1− xm

(1− x)(1− xmq)
· 1

(1− x)(1− xq−1)(1− xq−2) . . .
. (1.3)

We note that |Kζ,n(Fq)| only depends on the order m of ζ. When m = 1, we recover the
generating function given by Feit and Fine.

Theorem 1.1 is a direct consequence of the following result, which in itself can be viewed as
a refinement of Theorem 1.1. We define

Uζ,n(Fq) := {(A,B) ∈ Matn(Fq)×Matn(Fq) : AB = ζBA, A nonsingular}, (1.4)

and
Nζ,n(Fq) := {(A,B) ∈ Matn(Fq)×Matn(Fq) : AB = ζBA, A nilpotent}. (1.5)

When ζ = −1, the variety N−1,n is the semi-nilpotent anti-commuting variety, whose irre-
ducible components and their dimensions are explicitly described by Chen and Wang [4].

For brevity reason, we put |GLn(Fq)| in place of (qn−1)(qn−q) . . . (qn−qn−1) in the formulas
below, noting that |GLn(Fq)| = (qn − 1)(qn − q) . . . (qn − qn−1).

Theorem 1.2. Let m = ord(ζ). We have the following identities of power series in x:

(a)
∞∑
n=0

|Kζ,n(Fq)|
|GLn(Fq)|

xn =

(
∞∑
n=0

|Uζ,n(Fq)|
|GLn(Fq)|

xn

)(
∞∑
n=0

|Nζ,n(Fq)|
|GLn(Fq)|

xn

)
(1.6)

(b)
∞∑
n=0

|Uζ,n(Fq)|
|GLn(Fq)|

xn =
∞∏
i=1

Gm(x
i; q), (1.7)

where

Gm(x; q) :=
1− xm

(1− x)(1− xmq)
. (1.8)

(c)
∞∑
n=0

|Nζ,n(Fq)|
|GLn(Fq)|

xn =
∞∏
i=1

H(xi; q), (1.9)

where

H(x; q) :=
1

(1− x)(1− xq−1)(1− xq−2) . . .
. (1.10)

Using Theorem 1.2(a), Theorem 1.1 follows from the observation Fm(x; q) = Gm(x; q)H(x; q).
Note that Theorem 1.2(c) implies that |Nζ,n(Fq)| does not depend on m or ζ, as long as

ζ ̸= 0. In particular, |Nζ,n(Fq)| always equals |N1,n(Fq)|, which is known to Feit and Fine.
Therefore, the nontrivial dependence of |Kζ,n(Fq)| on ζ stems purely from that of |Uζ,n(Fq)|.
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1.2 History and related work

An important starting case in the study of varieties of modules is the commuting variety K1,n =
{(A,B) : A,B ∈ Matn, AB = BA}. The commuting variety over C was shown to be irreducible
by Gerstenhaber [10] and Motzkin and Taussky [15]. Its point count was given by Feit and
Fine [6]. This result was reproved by Bryan and Morrison [2] from the perspective of motivic
Donaldson–Thomas theory.

The commuting variety can be viewed in the context of Lie algebras. Let (g, [·, ·]) be a Lie
algebra over an algebraically closed field. Define the commuting variety of g as

C(g) := {(x, y) ∈ g× g : [x, y] = 0}, (1.11)

then K1,n is the commuting variety of the Lie algebra of n by n matrices. As a generaliza-
tion of the irreducibility result of K1,n, Richardson [16] showed that the commuting variety
of any reductive Lie algebra over C is irreducible. Levy [14] extended this result to positive
characteristic under mild restrictions on the Lie algebra. On the combinatorics side, Fulman
and Guralnick [8] generalized the point-count result of Feit and Fine to commuting varieties of
unitary groups and of odd characteristic sympletic groups. We also point out some papers that
relate counting problems in Lie algebras to maximal tori of Lie groups; see [9] and [13].

The focus of this paper, the ζ-commuting variety Kζ,n, is another generalization of the
commuting variety K1,n. When ζ = −1, we get the anti-commuting variety, whose geometry
over C was studied by Chen and Wang [4]. They gave explicit descriptions of the irreducible
components of K−1,n and of several variants. The above work was extended to general ζ by
Chen and Lu [3]. It is worth noting that Kζ,n is not irreducible unless ζ = 1. The main
contribution of our paper is the point count of Kζ,n.

The point count of Kζ,n can also be viewed as statistical information on the classification of
modules over the quantum plane. In specific, since an n-dimensional1 module over the quantum
plane Fq{X, Y }/(XY − ζY X) can be parametrized by a pair of matrices (A,B) in Kζ,n, the
standard orbit-stabilizer argument gives

|Kζ,n(Fq)|
|GLn(Fq)|

=
∑

dimM=n

1

|AutM |
, (1.12)

where M ranges over all isomorphism classes of n-dimensional modules over the quantum
plane. In other words, the xn-coefficient of the generating function in (1.1) is the weighted
count of isomorphism classes of n-dimensional modules over the quantum plane, with weight
inversely proportional to the size of the automorphism group (this weighting is commonly
known as the Cohen–Lenstra measure, following the important work of Cohen and Lenstra [5]
on random abelian groups). While Theorem 1.1 neither requires nor gives a classification of
finite-dimensional modules, it does compute their total weight. It is unknown whether Theorem
1.1 can be verified using a classification, via the interpretation (1.12). For work towards the
classification of finite-dimensional modules over the quantum plane, we refer the reader to
Bavula [1, §3], where a classification of simple modules are given.

For a fixed integer g ≥ 1, Hausel and Rodriguez-Villegas studied a related counting problem
[11, Eq (3.2.3)]

Nn(q) := |{A1, B1, . . . , Ag, Bg ∈ GLn(Fq) : [A1, B1] . . . [Ag, Bg]ζn = 1}|, (1.13)

1The dimensionality refers to the dimension as an Fq-vector space.

3



where [A,B] := ABA−1B−1 and ζn is a primitive n-th root of unity of Fq. If g = 1, then the
defining equation for Nn(q) is A1B1 = ζnB1A1 (replacing ζ−1

n by ζn in the process), so we have

Nn(q) = |KGL×GL
ζn,n

(Fq)| (1.14)

in the notation of Remark 2.2. We emphasize that Nn(q) are the diagonal entries of the table
|KGL×GL

ζm,n (Fq)| in m,n, which we determine in (3.21) in terms of a generating function.
Hausel and Rodriguez-Villegas observed a curious functional equation [11, Eq (3.5.12)] about

a generating function of Nn(q) that holds for all g, which reads

[xn]EGL×GL
ζn

(x; q) = −q[xn]EGL×GL
ζn

(x; q−1) (1.15)

when g = 1, where EGL×GL
ζm

(x; q) is a generating function of KGL×GL
ζm,n defined in Remark

2.2, and the operator [xn] refers to extracting the xn-coefficient. From our formula (3.21) for
EGL×GL

ζm
(x; q), we have

[xn]EGL×GL
ζn

(x; q) = q − 1, (1.16)

so the g = 1 case of the functional equation reads

q − 1 = −q(q−1 − 1). (1.17)

2 Proof of Theorem 1.2(a)

We recall that Theorem 1.2(a) claims that |Kζ,n(Fq)| for all n can be recovered from |Uζ,n(Fq)|
and |Nζ,n(Fq)| for all n. We start by proving a decomposition lemma, following the approach
of Feit and Fine [6].

Let V be an n-dimensional vector space over any field, then by Fitting’s lemma (see for
instance [12, p. 113]), for any linear map A ∈ End(V ), there is a unique decomposition V =
KA ⊕ IA such that A(KA) ⊆ KA, A(IA) ⊆ IA, A|KA

is nilpotent, and A|IA is nonsingular.

Lemma 2.1. Fix a linear map A ∈ End(V ) and a nonzero scalar ζ. Then a linear map
B ∈ End(V ) satisfies AB = ζBA if and only if

(a) B(KA) ⊆ KA, B(IA) ⊆ IA.

(b) A|KA
B|KA

= ζB|KA
A|KA

, A|IAB|IA = ζB|IAA|IA.

Proof. Having the decomposition V = KA⊕ IA, any linear map X ∈ End(V ) can be written as
a matrix

X =

[
X1 X2

X3 X4

]
,
X1 ∈ End(KA), X2 ∈ Hom(IA, KA),
X3 ∈ Hom(KA, IA), X4 ∈ End(IA).

(2.1)

Then we have

A =

[
N 0
0 U

]
(2.2)
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where N ∈ End(KA) is nilpotent and U ∈ End(IA) is nonsingular. For an arbitrary B =[
B1 B2

B3 B4

]
, the equation AB = ζBA is equivalent to


NB1 = ζB1N,

NB2 = ζB2U,

UB3 = ζB3N,

UB4 = ζB4U.

(2.3)

We note that B2 must be zero. Suppose not, since N is nilpotent, there exists an integer
r ≥ 0 such that N rB2 ̸= 0 but N r+1B2 = 0. The second equation gives N r+1B2 = ζN rB2U .
The left-hand side is zero, while the right-hand side is nonzero because ζ is a nonzero scalar
and U is nonsingular. This yields a contradiction.

A similar argument shows that B3 = 0, completing the proof of the lemma.

Let V = Fq
n. To choose A,B ∈ End(V ) with AB = ζBA, because of Lemma 2.1, it suffices

to choose a decomposition V = K ⊕ I, and then choose AK , BK ∈ End(K), AI , BI ∈ End(I)
such that AK is nilpotent, AKBK = ζBKAK , AI is nonsingular, and AIBI = ζBIAI . We have

|Kζ,n(Fq)| =
∑

s+t=n

h(s, t)|Nζ,s(Fq)||Uζ,t(Fq)|, (2.4)

where h(s, t) is the number of ordered pairs (K, I) of subspaces of V such that dimK =
s, dim I = t.

It is noted by Feit and Fine [6, Equation (5)] that

h(s, t) =
|GLn(Fq)|

|GLs(Fq)||GLt(Fq)|
. (2.5)

It follows that

∞∑
n=0

|Kζ,n(Fq)|
|GLn(Fq)|

xn =
∞∑
n=0

∑
s+t=n

|GLn(Fq)|
|GLs(Fq)||GLt(Fq)|

|Nζ,s(Fq)||Uζ,t(Fq)|
1

|GLn(Fq)|
xn (2.6)

=
∑
s,t≥0

|Nζ,s(Fq)|
|GLs(Fq)|

|Uζ,t(Fq)|
|GLt(Fq)|

xs+t (2.7)

=

(
∞∑
s=0

|Nζ,s(Fq)|
|GLs(Fq)|

xs

)(
∞∑
t=0

|Uζ,t(Fq)|
|GLt(Fq)|

xt

)
, (2.8)

completing the proof of Theorem 1.2(a).

Remark 2.2. The same argument can prove two other similar factorization identities below,
by noting that B is nonsingular (or nilpotent) if and only if both BK and BI are nonsingu-
lar (or nilpotent). To state the identities, for any combination of symbols F,G taken from
{Mat,GL,Nilp}, we define

KF×G
ζ,n := {(A,B) ∈ Fn(Fq)×Gn(Fq) : AB = ζBA}, (2.9)
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where Nilpn(Fq) denotes the set of n by n nilpotent matrices over Fq. Let

EF×G
ζ (x; q) :=

∞∑
n=0

|KF×G
ζ,n (Fq)|

|GLn(Fq)|
xn. (2.10)

Then

EMat×GL
ζ (x; q) = EGL×GL

ζ (x; q)ENilp×GL
ζ (x; q); (2.11)

EMat×Nilp
ζ (x; q) = EGL×Nilp

ζ (x; q)ENilp×Nilp
ζ (x; q). (2.12)

Note that Theorem 1.2(a) can be restated as

EMat×Mat
ζ (x; q) = EMat×GL

ζ (x; q)EMat×Nilp
ζ (x; q). (2.13)

3 Proof of Theorem 1.2(b)

Recall that the goal of Theorem 1.2(b) is to determine |Uζ,n(Fq)|, namely, to enumerate the
paris of matrices (A,B) ∈ Matn(Fq) ×Matn(Fq) such that AB = ζBA and A is nonsingular.
To do so, following the approach of Feit and Fine, let β be a similarity class of n× n matrices.
By a standard orbit-stabilizer argument, for B in β, the number of nonsingular matrices A such
that ABA−1 = ζB is either |GLn(Fq)|/|β| or zero. Moreover, this number is not zero if and
only if B is similar to ζB. We now give a sufficient and necessary condition for it in terms of
β.

We recall that each class β corresponds to a unique rational canonical form. It is charac-
terized by an n-dimensional module Mβ of the polynomial ring Fq[t]. Such a module can be
uniquely expressed in the form of

Mβ =
Fq[t]

(g1(t))
⊕ Fq[t]

(g2(t))
⊕ · · · ⊕ Fq[t]

(gr(t))
(3.1)

for monic polynomials g1, . . . , gr such that gi divides gi+1 for all 1 ≤ i ≤ r − 1. For a positive
integer m, we say a monic polynomial g to be in Pm if g(t) = tbG(tm) for some nonnegative
integer b and monic polynomial G. For example, a polynomial is in P2 if it is either even or
odd.

Lemma 3.1. Let B be an n×n matrix over any field, and let ζ be an m-th root of unity. Then
B is similar to ζB if and only if the polynomials g1, . . . , gr associated to the rational canonical
form of B are in Pm.

Proof. We denote the ground field by F. An endomorphism B over a vector space V determines
a module over the polynomial ring F[t] by letting t · v = Bv for v ∈ V . We denote this F[t]-
module by (B ↷ V ). The isomorphism class of this F[t]-module determines the rational
canonical form of B.

Let g1, . . . , gh be the polynomials associated to the rational canonical form of B. Then

(B ↷ V ) ∼=
F[t]

(g1(t))
⊕ F[t]

(g2(t))
⊕ · · · ⊕ F[t]

(gr(t))
. (3.2)
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We now compute (ζB ↷ V ). We have

(ζB ↷ V ) ∼= (ζt ↷ MB) (3.3)

∼=
r⊕

i=1

(
ζt ↷

F[t]
(gi(t))

)
(3.4)

∼=
r⊕

i=1

F[t]
(gi(ζ−1t))

, (3.5)

where the last isomorphism follows from (a): the action of ζt on
F[t]

(gi(t))
is cyclic, and (b): the

polynomial x 7→ gi(ζ
−1x) is a minimal polynomial for ζt acting on

F[t]
(gi(t))

.

Hence, B is similar to ζB if and only if

r⊕
i=1

F[t]
(gi(t))

∼=
r⊕

i=1

F[t]
(gi(ζ−1t))

(3.6)

as F[t]-modules. Since gi(t) divides gi+1(t) for all i, we have that gi(ζ
−1t) divides gi+1(ζ

−1t) as
well. By the uniqueness statement about the polynomials associated to the rational canonical
form, for each i, the monic polynomials gi(t) and ζdeg gigi(ζ

−1t) must be equal. Write gi(t) =
td + c1t

d−1 + · · · + cd−1t + cd, then ζdgi(ζ
−1t) = td + ζc1t

d−1 + · · · + ζd−1cd−1t + ζdcd. Since ζ
is an m-th root of unity, we observe that gi(t) = ζdgi(ζ

−1t) if and only if cj = 0 for all j not
divisible by m. This is equivalent to saying that gi(t) is in Pm.

Let Sζ,n(Fq) denote the set of similarity classes β of n× n matrices over Fq such that some
(equivalently, every) matrix B in β is similar to ζB. We have

|Uζ,n(Fq)| =
∑

B∈Matn(Fq)

|{A ∈ GLn(Fq) : ABA−1 = ζB}| (3.7)

=
∑
β

∑
B∈β

|{A ∈ GLn(Fq) : ABA−1 = ζB}| (3.8)

=
∑

β∈Sζ,n(Fq)

|β| |GLn(Fq)|
|β|

+
∑

β/∈Sζ,n(Fq)

0 (3.9)

= |GLn(Fq)||Sζ,n(Fq)|. (3.10)

We now count |Sζ,n(Fq)|. By Lemma 3.1, a similarity class in Sζ,n(Fq) is characterized
by monic polynomials g1, g2, . . . , gr in Pm such that every polynomial divides the next. Let
hi = gr+1−i/gr−i for 1 ≤ i ≤ t, where g0 = 1. It is easily checked from the definition of Pm

that g1, . . . , gr are all in Pm if and only if h1, . . . , hr are all in Pm. Let bi = deg hi. The only
restriction on the monic hi is that hi is in Pm and that

∑r
i=1 ibi = n. We observe the important

fact that the number of monic polynomials in Pm of degree bi is q
⌊bi/m⌋. Hence to give g1, . . . , gr,

we first choose (bi)i≥1 such that
∑

ibi = n, and then independently choose hi in Pm of degree
bi. It follows that

|Sζ,n(Fq)| =
∑
bi≥0∑
ibi=n

q⌊bi/m⌋. (3.11)
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Therefore,
∞∑
n=0

|Uζ,n(Fq)|
|GLn(Fq)|

xn =
∞∑
n=0

|Sζ,n(Fq)|xn (3.12)

=
∑
n≥0

∑
bi≥0∑
ibi=n

q⌊bi/m⌋xn (3.13)

=
∑

b1,b2,···≥0

q⌊bi/m⌋x
∑

ibi (3.14)

=
∞∏
i=1

∞∑
b=0

q⌊b/m⌋(xi)b. (3.15)

By writing b = km+ l with 0 ≤ l < m, we get

∞∑
b=0

q⌊b/m⌋xb =
m−1∑
l=0

∞∑
k=0

qkxkm+l (3.16)

=
m−1∑
l=0

xl

1− qxm
(3.17)

=
1 + x+ · · ·+ xm−1

1− qxm
(3.18)

=
1− xm

(1− x)(1− qxm)
. (3.19)

Hence, if we define Gm(x; q) =
1− xm

(1− x)(1− qxm)
, then we have

∞∑
n=0

|Uζ,n(Fq)|
|GLn(Fq)|

xn =
∞∏
i=1

Gm(x
i; q), (3.20)

finishing the proof of Theorem 1.2(b).

Remark 3.2. The same argument can compute a similar generating function below, by noting
that B is nonsingular if and only if each polynomial gi(t) that appears in the rational canonical
form has a nonzero constant term. In the notation of Remark 2.2, we have

EGL×GL
ζ (x; q) =

∞∏
i=1

1− xim

1− ximq
, (3.21)

where m = ord(ζ).
Similarly, if we instead notice that B is nilpotent if and only if each gi(t) is a power of t, we

get

EGL×Nilp
ζ (x; q) =

∞∏
i=1

1

1− xi
. (3.22)

We notice that the above two formulas, together with Theorem 1.2(b), verify (2.11) explic-
itly. We also observe that EGL×GL

ζ (x; q) is a power series in xm. In particular, this implies that
if AB = ζBA and A,B are both nonsingular, then the size n of the matrices A,B must be a
multiple of the order of ζ.
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4 Proof of Theorem 1.2(c)

We follow the idea of Fine and Herstein [7] to determine |Nζ,n(Fq)|, namely, the number of
matrix pairs (A,B) ∈ Matn(Fq)×Matn(Fq) such that AB = ζBA and A is nilpotent. In fact,
we will show that the situation is completely the same as the case ζ = 1 studied in [7].

Associate to each similarity class of n by n nilpotent matrices a partition π of n:

π : n = a1 · 1 + a2 · 2 + . . . , (4.1)

so that a representative of the similarity class associated to π is given by

Aπ =



0a1
0a2 1a2

0a2
0a3 1a3

0a3 1a3
0a3

. . .


, (4.2)

where 0a and 1a denote the a by a zero matrix and the a by a identity matrix, respectively.
Let α(π) denote the similarity class associated to π. Since the number of matrices B such

that AB = ζBA only depends on the similarity class of A, we have

|Nζ,n(Fq)| =
∑
π⊢n

|α(π)||{B ∈ Matn(Fq) : AπB = ζBAπ}|. (4.3)

For any fixed scalar ζ ̸= 0, it is elementary to check that AπB = ζBAπ if and only if B is
of the following form:

B1
1,1 B1

1,2 B1
1,3 B1

1,4 · · ·
B1

2,1 B1
2,2 B2

2,2 B1
2,3 B2

2,3 B1
2,4 B2

2,4

ζB1
2,2 ζB1

2,3 ζB1
2,4 · · ·

B1
3,1 B1

3,2 B2
3,2 B1

3,3 B2
3,3 B3

3,3 B1
3,4 B2

3,4 B3
3,4

ζB1
3,2 ζB1

3,3 ζB2
3,3 ζB1

3,4 ζB2
3,4 · · ·

ζ2B1
3,3 ζ2B1

3,4

B1
4,1 B1

4,2 B2
4,2 B1

4,3 B2
4,3 B3

4,3 B1
4,4 B2

4,4 B3
4,4 B4

4,4

ζB1
4,2 ζB1

4,3 ζB2
4,3 ζB1

4,4 ζB2
4,4 ζB3

4,4

ζ2B1
4,3 ζ2B1

4,4 ζ2B2
4,4 · · ·

ζ3B1
4,4

...
...

...
...

. . .



, (4.4)

where each Bk
i,j is an arbitrary ai by aj matrix, chosen independently. We note that the count

|{B ∈ Matn(Fq) : AπB = ζBAπ}| does not depend on ζ. Hence,

|Nζ,n(Fq)| = |N1,n(Fq)|. (4.5)

It is known in [6, Equation (6)] that

|N1,n(Fq)| = |GLn(Fq)|
∑
π⊢n

1

f(a1)f(a2) . . .
, (4.6)
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where f(a) := (1− q−1)(1− q−2) . . . (1− q−a).
Hence,

∞∑
n=0

|Nζ,n(Fq)|
|GLn(Fq)|

xn =
∞∑
n=0

∑
π⊢n

1

f(a1)f(a2) . . .
xn (4.7)

=
∑

a1,a2,···≥0

1

f(a1)f(a2) . . .
x
∑

iai (4.8)

=
∞∏
i=1

∞∑
a=0

1

f(a)
(xi)a (4.9)

=
∞∏
i=1

H(xi; q), (4.10)

where

H(x; q) :=
∞∑
a=0

1

f(a)
xa =

1

(1− x)(1− xq−1)(1− xq−2) . . .
(4.11)

by a classical identity due to Euler. This concludes the proof of Theorem 1.2(c), and hence
proves Theorem 1.2 and Theorem 1.1.

Remark 4.1. Combining Theorem 1.2(c), formula (3.22) and the decomposition formula (2.12),
we get (in the notation of Remark 2.2)

ENilp×Nilp
ζ (x; q) =

∞∏
i=1

1

(1− xiq−1)(1− xiq−2) . . .
. (4.12)

At this point, we have computed EF×G
ζ (x; q) for all combinations of F,G ∈ {Mat,GL,Nilp}.

We notice that EF×G
ζ (x; q) does not depend on ζ whenever F or G is Nilp. This should not be

surprising in light of the argument of Theorem 1.2(c).

5 Discussions

We note from the work of Bryan and Morrison [2, §3.1] that |U1,n(Fq)| and |N1,n(Fq)| “deter-
mine” each other. The key ingredient is that either of the quantities above is the point count
of the variety of modules over the “commutative” plane SpecFq[x, y] supported on a certain
subset of closed points. A module is determined by its localizations at closed points in its
support, so both |U1,n(Fq)| and |N1,n(Fq)| are determined by the point count of the variety of
modules supported at a point. Since the commutative plane “looks the same everywhere” lo-
cally in light of the Cohen structure theorem (the complete localization of Fq[x, y] at any closed
point is isomorphic to F[[x, y]] for some field extension F of Fq), we can reverse the process,
so that either of |U1,n(Fq)| and |N1,n(Fq)| determines the point count of the variety of modules
supported at a point, and hence determines each other.

However, for ζ ̸= 1, Theorem 1.2 shows that |Nζ,n(Fq)| does not depend on ζ while |Uζ,n(Fq)|
does. Is it still possible to recover |Uζ,n(Fq)| from |Nζ,n(Fq)| together with the geometry of the
quantum plane xy = ζyx (which will depend on ζ)?
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