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Main motivation
Formulate a common framework (the Cohen–Lenstra series) to

unify existing matrix enumeration results of distinct flavors.

motivate radically new matrix enumeration problems.

Selected classical results
|Nilpn(Fq)| = qn2−n (Fine–Herstein ’58 on nilpotent matrices)

∑
n≥0

|{A,B ∈ Matn(Fq) : AB = BA}|
|GLn(Fq)|

xn =
∏
i,j≥1

1

1 − xiq2−j

(Feit–Fine ’60)∑
n≥0

|{A,B ∈ Nilpn(Fq) : AB = BA}|
|GLn(Fq)|

xn =
∏
i,j≥1

1

1 − xiq−j

(Fulman–Guralnick ’18)

Key definition
To put the above results in a common framework, define for a commutative
algebra R over Fq the Cohen–Lenstra series by

ẐR(x) = ẐR/Fq
(x) :=

∑
M/R

1

|AutM |
xdimFq M,

where

M ranges over all isomorphism classes of R-modules that are
finite-dimensional as Fq-vector spaces.

|AutM | is the size of the automorphism group of M .

dimFq
M is the dimension of M as an Fq-vector space.

In some sense, ẐR(x) is about the statistics of finite-dimensional R-modules
distributed under the 1/|AutM | measure (originally studied by Cohen and
Lenstra for Dedekind domain R for number-theoretical purposes).

Classical results translated
Fine–Herstein ⇐⇒ ẐFq[[X]](x) =

∏
i≥1 1/(1 − xq−i).

Feit–Fine ⇐⇒ ẐFq[X,Y ](x) =
∏

i,j≥1 1/(1 − xiq2−j).

Fulman–Guralnick ⇐⇒ ẐFq[[X,Y ]](x) =
∏

i,j≥1 1/(1 − xiq−j).

Translation recipe
If R = Fq[X1, . . . , Xm]/(f1, . . . , fr), then

ẐR(x) =
∑
n≥0

|Kn(R)|
|GLn(Fq)|

xn,

where Kn(R) is the set of all tuples (A1, . . . , Am) such that

A1, . . . , Am are commuting matrices in Matn(Fq).

For 1 ≤ k ≤ r, the matrix fk(A1, . . . , Ak) (which makes sense!) is
zero.

If R = Fq[[X1, . . . , Xm]]/(f1, . . . , fr), then the same formula holds,
except in the definition of Kn(R), the matrices Ai are in addition required to
be nilpotent.

What’s known about ẐR(x)
The notion of ẐR(x) allows to tell new problems from old easily. The behavior
of ẐR(x) is determined (very sensitively!) by the local geometry of the affine
scheme SpecR.
Locality.

ẐR(x) =
∏
p

ẐR̂p
(x),

where R̂p ranges over the completed localizations of R at all maximal ideals p.
Known cases.
(a) R = Fq[[X]], ẐR(x) =

∏
i≥1 1/(1 − xq−i). (Fine–Herstein)

(b) R = Fq[[X,Y ]], ẐR(x) =
∏

i,j≥1 1/(1 − xiq−j).
(Fulman–Guralnick)

(c) X := SpecR is a smooth curve, then ẐR(x) =
∏

i≥1ZX(xq−i).

(d) X := SpecR is a smooth surface, then ẐR(x) =
∏

i,j≥1ZX(xiq−j).

Here, ZX(t) denotes the Hasse–Weil zeta function of X, e.g.,
ZA1(t) = 1/(1− qt). Formulas (c)(d) follow naturally from (a)(b) + locality
of ẐR(x).
The case for other R is radically different and there is almost nothing we can
say, except for the main theorems below.

Contributions
Using notation

(a; t)n := (1 − a)(1 − at) . . . (1 − atn−1),

(a; t)∞ := (1 − a)(1 − at)(1 − at2) . . . .

Theorem 1: a singular result (H. ’21, arXiv:2110.15566)
The count of pairs of mutually annihilating matrices is given by the formula

∞∑
n=0

|{A,B ∈ Matn(Fq) : AB = BA = 0}|
|GLn(Fq)|

xn =
1

(x; q−1)2∞
Hq(x),

where

Hq(x) :=
∞∑
k=0

q−k2
x2k

(q−1; q−1)k
(xq−k−1; q−1)∞.

Moreover, Hq(x) is an entire function in x ∈ C.
Remarks

The LHS is ẐR(x) where R = Fq[X,Y ]/(XY ).

SpecR is two lines intersecting at a nodal singularity.

Theorem 1 is interesting even without the explicit formula of Hq(x): the

point is that ẐR(x) admits such a factorization for some entire function
Hq(x).

Hq(x) can be viewed as a local invariant attached to the nodal singularity,
though the relation to its geometry is unknown.

Methods
The counting is direct, using elementary linear algebra.

The factorization requires standard techniques manipulating Young
diagrams, especially the Durfee squares.

It is coincidental that elementary methods work! It is far from the case for
other singularities. A geometric explanation is lacking.

Theorem 2: a noncommutative result (H. ’21, arXiv:2110.15570)
Let ζ be a primitive m-th root of unity of Fq (so ζm = 1). Then

∞∑
n=0

|{A,B ∈ Matn(Fq) : AB = ζBA}|
|GLn(Fq)|

xn =
∞∏
i=1

Fm(xi; q),

where

Fm(x; q) :=
1 − xm

(1 − x)(1 − xmq)
·

1

(x; q−1)∞
.

Remarks
Recovers Feit–Fine ’60 as the special case ζ = 1, by substituting m = 1
in the formula.

The LHS can be viewed as a noncommutative version of ẐR(x) where
R = Fq{X,Y }/(XY − ζY X), the quantum plane.
The first factor of Fm(x; q) can be viewed (in some precise sense) as the
contribution of pairs with invertible A, and the second factor the
contribution of pairs with nilpotent A.

Methods
The counting of pairs with nilpotent A is explicit entry-wise equation
solving.

The counting with invertible A boils down to classifying matrices B such
that B is similar to ζB. There is a nice classification in terms of the Smith
normal form.

Conjecture: other singularities
Let SpecR be a singular curve, and Spec R̃ be its normalization (i.e.,
resolution of singularity). Then ẐR(x) has a factorization

ẐR(x) = ẐR̃(x)HX(x)

such that HX(x) is entire.

Remarks
The conjecture predicts that ẐR(x) has a “natural” factorization with one
of the factors depending on the normalization of R. (For now, “natural” =
the other factor is entire.)

The conjecture is local and only depends on the singularities of X.

The conjecture is verified for the nodal singularity (Theorem 1). We have
obtained positive evidences in the case of a cusp (joint work in progress).
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