Cohen–Lenstra series from module statistics and matrix enumeration

Yifeng Huang

University of Michigan arXiv:2110.15566, 2110.15570

Main motivation

Formulate a common framework (the Cohen–Lenstra series) to

- unify existing matrix enumeration results of distinct flavors.
- motivate radically new matrix enumeration problems.

Selected classical results

 $|\operatorname{Nilp}_n(\mathbb{F}_q)| = q^{n^2 - n}$ (Fine–Herstein '58 on nilpotent matrices)

$$\sum_{n\geq 0} rac{|\{A,B\in \operatorname{Mat}_n(\mathbb{F}_q):AB=BA\}|}{|\operatorname{GL}_n(\mathbb{F}_q)|} x^n = \prod_{i,j\geq 1} rac{1}{1-x^iq^{2-j}}$$
(Feit-Fine '60)
 $\sum_{n\geq 0} rac{|\{A,B\in \operatorname{Nilp}_n(\mathbb{F}_q):AB=BA\}|}{|\operatorname{GL}_n(\mathbb{F}_q)|} x^n = \prod_{i,j\geq 1} rac{1}{1-x^iq^{-j}}$
(Fulman-Guralnick '18)

Contributions Using notation

$$(a;t)_n:=(1-a)(1-at)\dots(1-at^{n-1}),\ (a;t)_\infty:=(1-a)(1-at)(1-at^2)\dots$$

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \mbox{Theorem 1: a singular result (H. '21, arXiv:2110.15566)} \\ \mbox{The count of pairs of mutually annihilating matrices is given by the formula} \\ \begin{array}{l} \displaystyle \sum_{n=0}^{\infty} \frac{|\{A, B \in \operatorname{Mat}_n(\mathbb{F}_q) : AB = BA = 0\}|}{|\operatorname{GL}_n(\mathbb{F}_q)|} x^n = \frac{1}{(x; q^{-1})_{\infty}^2} H_q(x), \end{array}$

Key definition

To put the above results in a common framework, define for a commutative algebra R over \mathbb{F}_q the **Cohen–Lenstra series** by

$$\widehat{Z}_R(x) = \widehat{Z}_{R/\mathbb{F}_q}(x) := \sum_{M/R} rac{1}{|\mathrm{Aut}\,M|} x^{\dim_{\mathbb{F}_q}M},$$

where

- M ranges over all isomorphism classes of R-modules that are finite-dimensional as \mathbb{F}_q -vector spaces.
- ullet $|{
 m Aut}\,M|$ is the size of the automorphism group of M.
- $ullet \ \dim_{\mathbb{F}_q} M$ is the dimension of M as an \mathbb{F}_q -vector space.

In some sense, $\widehat{Z}_R(x)$ is about the statistics of finite-dimensional R-modules distributed under the $1/|\operatorname{Aut} M|$ measure (originally studied by Cohen and Lenstra for Dedekind domain R for number-theoretical purposes).

where

$$H_q(x):=\sum_{k=0}^\infty rac{q^{-k^2}x^{2k}}{(q^{-1};q^{-1})_k}(xq^{-k-1};q^{-1})_\infty.$$

Moreover, $H_q(x)$ is an entire function in $x \in \mathbb{C}$.

Remarks

- ullet The LHS is $\widehat{Z}_R(x)$ where $R=\mathbb{F}_q[X,Y]/(XY)$.
- $\circ \operatorname{Spec} R$ is two lines intersecting at a nodal singularity.
- Theorem 1 is interesting even without the explicit formula of $H_q(x)$: the point is that $\widehat{Z}_R(x)$ admits such a factorization for some entire function $H_q(x)$.
- $H_q(x)$ can be viewed as a local invariant attached to the nodal singularity, though the relation to its geometry is unknown.

Met<u>h</u>ods

- The counting is direct, using elementary linear algebra.
- The factorization requires standard techniques manipulating Young diagrams, especially the Durfee squares.
- It is coincidental that elementary methods work! It is far from the case for other singularities. A geometric explanation is lacking.

Theorem 2: a noncommutative result (H. '21, arXiv:2110.15570) Let ζ be a primitive m-th root of unity of \mathbb{F}_q (so $\zeta^m = 1$). Then $\sum_{n=0}^{\infty} \frac{|\{A, B \in \operatorname{Mat}_n(\mathbb{F}_q) : AB = \zeta BA\}|}{|\operatorname{GL}_n(\mathbb{F}_q)|} x^n = \prod_{i=1}^{\infty} F_m(x^i;q),$ where $F_m(x;q) := \frac{1-x^m}{(1-x)(1-x^mq)} \cdot \frac{1}{(x;q^{-1})_{\infty}}.$

- - /

Classical results translated • Fine-Herstein $\iff \widehat{Z}_{\mathbb{F}_q[[X]]}(x) = \prod_{i \ge 1} 1/(1 - xq^{-i}).$ • Feit-Fine $\iff \widehat{Z}_{\mathbb{F}_q[X,Y]}(x) = \prod_{i,j \ge 1} 1/(1 - x^iq^{2-j}).$ • Fulman-Guralnick $\iff \widehat{Z}_{\mathbb{F}_q[[X,Y]]}(x) = \prod_{i,j \ge 1} 1/(1 - x^iq^{-j}).$ Translation recipe If $R = \mathbb{F}_q[X_1, \dots, X_m]/(f_1, \dots, f_r)$, then

$$\widehat{Z}_R(x) = \sum_{n \geq 0} rac{|K_n(R)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n,$$

where $K_n(R)$ is the set of all tuples (A_1,\ldots,A_m) such that

- A_1, \ldots, A_m are commuting matrices in $\mathrm{Mat}_n(\mathbb{F}_q)$.
- For $1 \leq k \leq r$, the matrix $f_k(A_1, \ldots, A_k)$ (which makes sense!) is

zero.

If $R = \mathbb{F}_q[[X_1, \dots, X_m]]/(f_1, \dots, f_r)$, then the same formula holds, except in the definition of $K_n(R)$, the matrices A_i are in addition required to be nilpotent.

What's known about $\widehat{Z}_R(x)$

The notion of $\widehat{Z}_R(x)$ allows to tell new problems from old easily. The behavior of $\widehat{Z}_R(x)$ is determined (very sensitively!) by the local geometry of the affine scheme Spec R.

Remarks

- Recovers Feit–Fine '60 as the special case $\zeta = 1$, by substituting m = 1 in the formula.
- The LHS can be viewed as a noncommutative version of $\widehat{Z}_R(x)$ where $R = \mathbb{F}_q\{X,Y\}/(XY \zeta YX)$, the **quantum plane**.
- The first factor of $F_m(x;q)$ can be viewed (in some precise sense) as the contribution of pairs with invertible A, and the second factor the contribution of pairs with nilpotent A.

Methods

- The counting of pairs with nilpotent A is explicit entry-wise equation solving.
- The counting with invertible A boils down to classifying matrices B such that B is similar to ζB . There is a nice classification in terms of the Smith

Locality.

 $\widehat{Z}_R(x) = \prod_p \widehat{Z}_{\widehat{R}_p}(x),$

where \widehat{R}_p ranges over the completed localizations of R at all maximal ideals p. Known cases.

(a) $R = \mathbb{F}_q[[X]], \ \widehat{Z}_R(x) = \prod_{i \ge 1} 1/(1 - xq^{-i}).$ (Fine-Herstein) (b) $R = \mathbb{F}_q[[X, Y]], \ \widehat{Z}_R(x) = \prod_{i,j \ge 1} 1/(1 - x^i q^{-j}).$ (Fulman-Guralnick)

(c) $X := \operatorname{Spec} R$ is a smooth curve, then $\widehat{Z}_R(x) = \prod_{i \ge 1} Z_X(xq^{-i})$. (d) $X := \operatorname{Spec} R$ is a smooth surface, then $\widehat{Z}_R(x) = \prod_{i,j \ge 1} Z_X(x^iq^{-j})$. Here, $Z_X(t)$ denotes the Hasse–Weil zeta function of X, e.g.,

 $Z_{\mathbb{A}^1}(t) = 1/(1-qt)$. Formulas (c)(d) follow naturally from (a)(b) + locality of $\widehat{Z}_R(x)$.

The case for other R is radically different and there is almost nothing we can say, except for the main theorems below.

normal form.

Conjecture: other singularities

Let Spec R be a singular curve, and Spec \widetilde{R} be its normalization (i.e., resolution of singularity). Then $\widehat{Z}_R(x)$ has a factorization

 $\widehat{Z}_R(x) = \widehat{Z}_{\widetilde{R}}(x) H_X(x)$

such that $H_X(x)$ is entire.

Remarks

- The conjecture predicts that $\widehat{Z}_{R}(x)$ has a "natural" factorization with one of the factors depending on the normalization of R. (For now, "natural" = the other factor is entire.)
- ullet The conjecture is local and only depends on the singularities of X.
- The conjecture is verified for the nodal singularity (Theorem 1). We have obtained positive evidences in the case of a cusp (joint work in progress).