Punctual Quot scheme on cusp via Gröbner stratification

Yifeng Huang

University of British Columbia

joint with Ruofan Jiang

Theorem (HJ23, arxiv: 2305.06411) Let $X = \{x^2 = y^3\}$ be the affine cusp curve. Then $\sum_{n=0}^{\infty} [\operatorname{Quot}_{d,n}(X)]t^n := \sum_{n=0}^{\infty} [\{\mathcal{O}_X^d \twoheadrightarrow M : \operatorname{dim supp} M = 0, \operatorname{deg} M = n\}]t^n$

is rational in t with denominator $(1 - \mathbb{L}t)(1 - \mathbb{L}^2t) \dots (1 - \mathbb{L}^dt)$.

Background – Definitions

Let $k = \mathbb{C}$ or \mathbb{F}_q , and X be a k-variety.

- Motive: The motive [X] of an variety X is the equivalence class of X in K₀(Var_k) (the Grothendieck ring of varieties) where we identify [V] = [V \ Z] + [Z] for closed subvariety Z ⊆ V and [V \ W] = [V] · [W]. This is a geometric version of "point counting over F_q" but works for C-varieties as well. Write L = [A¹].
- Quot scheme: $Quot_{d,n}(X)$ is the moduli space parametrizing quotient sheaves $\mathcal{O}_X^d \twoheadrightarrow M$ of zero-dimensional support and length n.
- Commuting variety: If X is affine, $C_n(X)$ parametrizes tuples of commuting matrices satisfying defining equations of X.
- Stack of coherent sheaves: $Coh_n(X)$ is the moduli stack parametrizing coherent sheaves of zero-dimensional support and length n.
- For X affine, $\operatorname{Coh}_n(X)$ is the stack quotient $[C_n(X)/\operatorname{GL}_n]$. The motive of $\operatorname{Coh}_n(X)$ satisfies $[\operatorname{Coh}_n(X)] = [C_n(X)]/[\operatorname{GL}_n]$.

Background - Old and new results

X	$[\operatorname{Coh}_n(X)]$	$[\operatorname{Quot}_{1,n}(X)]$	$[\operatorname{Quot}_{d,n}(X)]$
smooth curve	[FH58* CL83*]	[well-known]	[Sol77* Bif89, etc.]
smooth surface	[FF60* BM15]	[ES87 Göt01]	(<i>χ</i>) [OP21]
singular curve	(eg) [H.23]	[GS14, BRV20]	(eg) [HJ23]
singular surface	open	(eg, χ) [GNS17]	open
essentially	matrix count	ideal count	submodule count
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
[H.23]: H.; node case; count matrices $AB = BA = 0$ [GS14]: Göttsche and Shende			ted invariants such as (vir-
[BRV20]: Bejleri, Ranganathan and Vakil [GNS17]: Gyenge, Némenthi and Szendrői			ual) Euler characteristics, ut not motive

Singular curves

Let $Q_{d,X}(t) = \sum_{n=0}^{n} [\operatorname{Quot}_{d,n}(X)]t^n$ and $\widehat{Z}_X(t) = \sum_{n=0}^{n} [\operatorname{Coh}_n(X)]t^n$. Then $Q_{1,X}(t)$ satisfies

- Rationality: Q_{1,X}(t) is rational with denominator dictated by the normalization of X (equivalently, numbers of branches around singularities). The numerator depends on the singularities only. [BRV20]
- Functional Equation: Under mild assumptions on the singularities, $Q_{1,X}(t)$ satisfies a functional equation $t \mapsto 1/(\mathbb{L}t)$, which means the numerator has a certain symmetry. [GS14]

In [H. 23], I discovered a "rationality" statement for $\widehat{Z}_X(t)$ if X has only nodal singularities. Nothing was known for $Q_{d,X}(t)$ if X is singular and $d \ge 2$.

Goal

Investigate analogous phenomena for $Q_{d,X}(t)$ and $\widehat{Z}_X(t)$ for curve singularities in general.

Algebraic ingredient: Gröbner stratification

Let $X = \{x^2 = y^3\}$ be the affine cusp curve. Now prove [HJ23].

- Recall $\operatorname{Quot}_{d,n}(X) = \{\mathcal{O}_X^d \twoheadrightarrow M\}$. Taking the kernel, $\operatorname{Quot}_{d,n}(X) = \{N \subseteq \mathcal{O}_X^d : \mathcal{O}_X^d / K \text{ has zero-dimensional support and length } n\}$.
- Locally speaking, we are classifying submodules of R^d (where $R = k[[T^2, T^3]]$) of codimension n as a k-vector subspace.
- The theory of reduced Gröbner bases for power series ring (aka standard bases) does exactly this job. Here R is only a subring of k[[T]], but the theory extends with minor modification.
- We stratify our moduli space into strata, each indexed by a "leading term datum" that is discrete and combinatorial.
- We try to classify submodules that belong to each stratum. This requires a Buchberger criterion to test if a submodule does have a prescribed leading term datum.
- It turns out that each stratum is parametrized by solutions of a matrix equation; we don't fully understand them, but we observe **eventual stability.**

Combinatorial ingredient: Spiral raising operator

- unmoved points
- origins of moved points
 destinations of moved points
 columns of moved points

- Motives of strata are eventually stable (up to correction) with respect to the "spiral raising operators" performed on the leading term data, essentially d-tuples.
- $\gamma_{(j)}(1 \le j \le d)$ fixes the lowest j 1 points and moves the rest.
- We show that these operators commute and act freely transitively.
- Upshot: Break the sum over all data into finitely many orbit sums!

Combining ingredients: Orbit sum

$$\begin{array}{c|c} (J(1), K(0)) \\ 1 \cdot q \cdot q^{3}t^{1} \\ \hline \gamma(2) \downarrow \\ \gamma(2) \downarrow \\ \gamma(2) \downarrow \\ 1 \cdot q \cdot q^{4}t^{2} \\ \hline \gamma(2) \downarrow \\ \gamma(2) \downarrow \\ 1 \cdot q \cdot q^{4}t^{2} \\ \hline \gamma(2) \downarrow \\ 1 \cdot q \cdot q^{4}t^{2} \\ \hline \gamma(2) \downarrow \\ 1 \cdot q \cdot q^{4}t^{2} \\ \hline \gamma(2) \downarrow \\ 1 \cdot q \cdot q^{4}t^{2} \\ \hline \gamma(2) \downarrow \\ 1 \cdot q \cdot q^{4}t^{2} \\ \hline \gamma(2) \downarrow \\ 1 \cdot q \cdot q^{4}t^{2} \\ \hline \gamma(2) \downarrow \\ 1 \cdot q \cdot q^{4}t^{2} \\ \hline \gamma(2) \downarrow \\ 1 \cdot q \cdot q^{4}t^{2} \\ \hline \gamma(2) \downarrow \\ 1 \cdot q \cdot q^{4}t^{2} \\ \hline \gamma(2) \downarrow \\ 1 \cdot q \cdot q^{4}t^{2} \\ \hline \gamma(2) \downarrow \\ 1 \cdot q \cdot q^{4}t^{2} \\ \hline \gamma(2) \downarrow \\ \hline \gamma(2) \downarrow \\ 1 \cdot q \cdot q^{4}t^{2} \\ \hline \gamma(2) \downarrow \\ \hline \gamma(2) \downarrow \\ 1 \cdot q \cdot q^{4}t^{2} \\ \hline \gamma(2) \downarrow \\ \hline \gamma(2)$$

Our generating function is a sum of rational functions Each orbit (marked by its box) contributes one. There are 2^d like diagrams this. Adding them all up proves our rationality theorem [HJ23]!

Results and conjectures for cusp $\{x^2 = y^3\}$

- Our rationality theorem [HJ23] does not require knowing the motive of each stratum.
- But when $d \leq 3$, we do know, and our method computes $Q_{d,X}(t)$ explicitly when $d \leq 3$. For example,

$$Q_{3,X}(t) = \frac{1 + (\mathbb{L}^3 + \mathbb{L}^4 + \mathbb{L}^5)t^2 + (\mathbb{L}^6 + \mathbb{L}^7 + \mathbb{L}^8)t^4 + \mathbb{L}^9t^6}{(1 - \mathbb{L}t)(1 - \mathbb{L}^2t)(1 - \mathbb{L}^3t)}.$$

- We observe a functional equation for d ≤ 3 by inspecting the symmetry. We conjecture it holds for all d.
- Observed patterns in d ≥ 3, if true for all d, uniquely determine a conjectured formula for all Q_{d,X}(t), which would then imply a strikingly simple formula for Ẑ_X(t) via a theorem about the forgetful map Quot_{d,n}(X) → Coh_n(X). The formula would confirm the "rationality" for Ẑ_X(t) and give the matrix count #{AB = BA, A² = B³} in Mat_n(𝔽_q)!

Current and future work

• (Work with Jiang in progress; using lattice zeta functions) Conjecture: for the $x^2 = y^3$ cusp, the numerator of $Q_{d,X}(t)$ is

$$\sum_{j=0}^{d} \begin{bmatrix} d \\ j \end{bmatrix}_{\mathbb{L}} (\mathbb{L}^{d} t^{2})^{j}, \quad \begin{bmatrix} d \\ j \end{bmatrix}_{\mathbb{L}} = [\operatorname{Gr}(j, d)] \text{ the } q \text{-binomial coef.}$$

The numerator of $\widehat{Z}_X(t)$ is $\sum_{n=0}^{\infty} \frac{\mathbb{L}^{-n^2} t^{2n}}{(1-\mathbb{L}^{-1})\dots(1-\mathbb{L}^{-n})}$.

- (Work with Jiang in progress; using lattice zeta functions) Conjecture: If X has only unibranched singularities, then $Q_{d,X}(t)$ is rational in t.
- (Work with Jiang in preparation; using Gröbner bases) For the node $X = \{xy = 0\}$, we have a recursive formula for $Q_{d,X}(t)$.
- (Hard) Conjecture: If X is a Gorenstein and projective curve with arithmetic genus g_a , then we have the functional equation

$$Q_{d,X}(t) = (\mathbb{L}^{d^2} t^{2d})^{g_a - 1} Q_{d,X}(\mathbb{L}^{-d} t^{-1}).$$