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Theorem (HJ23, arxiv: 2305.06411)

Let X = {x2 = y3} be the affine cusp curve. Then

∞∑
n=0

[Quotd,n(X)]tn :=

∞∑
n=0

[{Od
X ↠ M : dim suppM = 0, degM = n}]tn

is rational in t with denominator (1− Lt)(1− L2t) . . . (1− Ldt).



Background – Definitions

Let k = C or Fq, and X be a k-variety.

Motive: The motive [X] of an variety X is the equivalence class of
X in K0(Vark) (the Grothendieck ring of varieties) where we identify
[V ] = [V ∖ Z] + [Z] for closed subvariety Z ⊆ V and
[V ×W ] = [V ] · [W ]. This is a geometric version of “point counting
over Fq” but works for C-varieties as well. Write L = [A1].

Quot scheme: Quotd,n(X) is the moduli space parametrizing

quotient sheaves Od
X ↠ M of zero-dimensional support and length n.

Commuting variety: If X is affine, Cn(X) parametrizes tuples of
commuting matrices satisfying defining equations of X.

Stack of coherent sheaves: Cohn(X) is the moduli stack
parametrizing coherent sheaves of zero-dimensional support and
length n.

For X affine, Cohn(X) is the stack quotient [Cn(X)/GLn]. The
motive of Cohn(X) satisfies [Cohn(X)] = [Cn(X)]/[GLn].



Background – Old and new results

X [Cohn(X)] [Quot1,n(X)] [Quotd,n(X)]

smooth curve [FH58*|CL83*] [well-known] [Sol77*|Bif89, etc.]
smooth surface [FF60*|BM15] [ES87|Göt01] (χ) [OP21]

singular curve (eg) [H.23] [GS14, BRV20] (eg) [HJ23]

singular surface open (eg, χ) [GNS17] open

essentially... matrix count ideal count submodule count
[FH58]: Fine and Herstein; count nilpotent matrices
[CL83]: Cohen and Lenstra
[well-known]: ideals of k[[T ]] are (Tn); | Quot1,n(X) = Symn(X).
[Sol77]: Solomon; lattice zeta function
[Bif89, etc.]: Bifet; generalizations by BFP20, MR22
[FF60]: Feit and Fine; count matrices AB = BA
[BM15]: Bryan and Morrison
[ES87]: Ellingsrud and Strømme; Hilbn(C2)
[Göt01]: Göttsche
[OP21]: Oprea and Pandharipande
[H.23]: H.; node case; count matrices AB = BA = 0
[GS14]: Göttsche and Shende
[BRV20]: Bejleri, Ranganathan and Vakil
[GNS17]: Gyenge, Némenthi and Szendrői

*: not in motivic language
[local|global]: local and global

results
(eg): known only for some

(families of) examples

(χ): known in terms of re-

lated invariants such as (vir-

tual) Euler characteristics,

but not motive



Singular curves

Let Qd,X(t) =
∑n

n=0[Quotd,n(X)]tn and ẐX(t) =
∑n

n=0[Cohn(X)]tn.
Then Q1,X(t) satisfies

Rationality: Q1,X(t) is rational with denominator dictated by the
normalization of X (equivalently, numbers of branches around
singularities). The numerator depends on the singularities only.
[BRV20]

Functional Equation: Under mild assumptions on the singularities,
Q1,X(t) satisfies a functional equation t 7→ 1/(Lt), which means the
numerator has a certain symmetry. [GS14]

In [H. 23], I discovered a “rationality” statement for ẐX(t) if X has only
nodal singularities. Nothing was known for Qd,X(t) if X is singular and
d ≥ 2.

Goal

Investigate analogous phenomena for Qd,X(t) and ẐX(t) for curve
singularities in general.



Algebraic ingredient: Gröbner stratification

Let X = {x2 = y3} be the affine cusp curve. Now prove [HJ23].

Recall Quotd,n(X) = {Od
X ↠ M}. Taking the kernel, Quotd,n(X) =

{N ⊆ Od
X : Od

X/K has zero-dimensional support and length n}.
Locally speaking, we are classifying submodules of Rd (where
R = k[[T 2, T 3]]) of codimension n as a k-vector subspace.

The theory of reduced Gröbner bases for power series ring (aka
standard bases) does exactly this job. Here R is only a subring of
k[[T ]], but the theory extends with minor modification.

We stratify our moduli space into strata, each indexed by a “leading
term datum” that is discrete and combinatorial.

We try to classify submodules that belong to each stratum. This
requires a Buchberger criterion to test if a submodule does have a
prescribed leading term datum.

It turns out that each stratum is parametrized by solutions of a
matrix equation; we don’t fully understand them, but we observe
eventual stability.



Combinatorial ingredient: Spiral raising operator
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γ(5)(2, 3, 1, 2, 0, 3, 1) = (2, 4, 1, 3, 0, 2, 1)

• unmoved points
⊙ origins of moved points
◦ destinations of moved points
| columns of moved points

Motives of strata are
eventually stable (up to
correction) with respect
to the “spiral raising
operators” performed on
the leading term data,
essentially d-tuples.

γ(j)(1 ≤ j ≤ d) fixes
the lowest j − 1 points
and moves the rest.

We show that these
operators commute and
act freely transitively.

Upshot: Break the sum
over all data into finitely
many orbit sums!



Combining ingredients: Orbit sum

(J(1),K(0))
1 · q · q3t1

(J(1),K(1))
1 · q · q4t2

(J(1),K(2))
q · q · q6t3

(J(1),K(3))
q2 · q · q8t4 · · ·

(K(1), J(1))
1 · q · q4t2

(K(2), J(1))
q · q · q5t3

(K(3), J(1))
q2 · q · q7t4

(K(4), J(1))
q2 · q · q9t5 · · ·

(J(2),K(1))
1 · q · q5t3

(J(2),K(2))
q · q · q6t4

(J(2),K(3))
q2 · q · q8t5

(J(2),K(4))
q2 · q · q10t6 · · ·

(K(2), J(2))
q · q · q6t4

(K(3), J(2))
q2 · q · q7t5

(K(4), J(2))
q2 · q · q9t6

(K(5), J(2))
q2 · q · q11t7 · · ·

(J(3),K(2))
q · q · q7t5

(J(3),K(3))
q2 · q · q8t6

(J(3),K(4))
q2 · q · q10t7

(J(3),K(5))
q2 · q · q12t8 · · ·

(K(3), J(3))
q2 · q · q8t6

(K(4), J(3))
q2 · q · q9t7

(K(5), J(3))
q2 · q · q11t8

(K(6), J(3))
q2 · q · q13t9 · · ·

...
...

...
...

γ(3)

γ(2)

Our generating

function is a

sum of rational

functions. Each

orbit (marked

by its box)

contributes one.

There are 2d

diagrams like

this. Adding

them all up

proves our ratio-

nality theorem

[HJ23]!



Results and conjectures for cusp {x2 = y3}

Our rationality theorem [HJ23] does not require knowing the motive
of each stratum.

But when d ≤ 3, we do know, and our method computes Qd,X(t)
explicitly when d ≤ 3. For example,

Q3,X(t) =
1 + (L3 + L4 + L5)t2 + (L6 + L7 + L8)t4 + L9t6

(1− Lt)(1− L2t)(1− L3t)
.

We observe a functional equation for d ≤ 3 by inspecting the
symmetry. We conjecture it holds for all d.

Observed patterns in d ≥ 3, if true for all d, uniquely determine a
conjectured formula for all Qd,X(t), which would then imply a

strikingly simple formula for ẐX(t) via a theorem about the forgetful
map Quotd,n(X) → Cohn(X). The formula would confirm the

“rationality” for ẐX(t) and give the matrix count
#{AB = BA,A2 = B3} in Matn(Fq)!



Current and future work

(Work with Jiang in progress; using lattice zeta functions) Conjecture:
for the x2 = y3 cusp, the numerator of Qd,X(t) is

d∑
j=0

[
d

j

]
L
(Ldt2)j ,

[
d

j

]
L
= [Gr(j, d)] the q-binomial coef.

The numerator of ẐX(t) is
∑∞

n=0
L−n2

t2n

(1−L−1)...(1−L−n)
.

(Work with Jiang in progress; using lattice zeta functions) Conjecture:
If X has only unibranched singularities, then Qd,X(t) is rational in t.

(Work with Jiang in preparation; using Gröbner bases) For the node
X = {xy = 0}, we have a recursive formula for Qd,X(t).

(Hard) Conjecture: If X is a Gorenstein and projective curve with
arithmetic genus ga, then we have the functional equation

Qd,X(t) = (Ld2t2d)ga−1Qd,X(L−dt−1).


