Punctual Quot scheme on cusp via Gröbner stratification

Yifeng Huang

University of British Columbia
joint with Ruofan Jiang

Theorem (HJ23, arxiv: 2305.06411)
Let $X=\left\{x^{2}=y^{3}\right\}$ be the affine cusp curve. Then

$$
\sum_{n=0}^{\infty}\left[\operatorname{Quot}_{d, n}(X)\right] t^{n}:=\sum_{n=0}^{\infty}\left[\left\{\mathcal{O}_{X}^{d} \rightarrow M: \operatorname{dim} \operatorname{supp} M=0, \operatorname{deg} M=n\right\}\right] t^{n}
$$ is rational in t with denominator $(1-\mathbb{L} t)\left(1-\mathbb{L}^{2} t\right) \ldots\left(1-\mathbb{L}^{d} t\right)$.

Background - Definitions

Let $k=\mathbb{C}$ or \mathbb{F}_{q}, and X be a k-variety.

- Motive: The motive $[X]$ of an variety X is the equivalence class of X in $K_{0}\left(\operatorname{Var}_{k}\right)$ (the Grothendieck ring of varieties) where we identify $[V]=[V \backslash Z]+[Z]$ for closed subvariety $Z \subseteq V$ and $[V \times W]=[V] \cdot[W]$. This is a geometric version of "point counting over $\mathbb{F}_{q}{ }^{\prime \prime}$ but works for \mathbb{C}-varieties as well. Write $\mathbb{L}=\left[\mathbb{A}^{1}\right]$.
- Quot scheme: Quot $_{d, n}(X)$ is the moduli space parametrizing quotient sheaves $\mathcal{O}_{X}^{d} \rightarrow M$ of zero-dimensional support and length n.
- Commuting variety: If X is affine, $C_{n}(X)$ parametrizes tuples of commuting matrices satisfying defining equations of X.
- Stack of coherent sheaves: $\operatorname{Coh}_{n}(X)$ is the moduli stack parametrizing coherent sheaves of zero-dimensional support and length n.
- For X affine, $\operatorname{Coh}_{n}(X)$ is the stack quotient $\left[C_{n}(X) / \mathrm{GL}_{n}\right]$. The motive of $\operatorname{Coh}_{n}(X)$ satisfies $\left[\operatorname{Coh}_{n}(X)\right]=\left[C_{n}(X)\right] /\left[\mathrm{GL}_{n}\right]$.

Background - Old and new results

X	$\left[\operatorname{Coh}_{n}(X)\right]$	$\left[\operatorname{Quot}_{1, n}(X)\right]$	$\left[\mathrm{Quot}_{d, n}(X)\right]$
smooth curve	$\left[\mathrm{FH}^{*} \mid \mathrm{CL} 83^{*}\right]$	$[$ well-known $]$	$\left[\mathrm{Sol}^{*} 77^{*} \mid\right.$ Bif89, etc. $]$
smooth surface	$[\mathrm{FF60} \mid \mathrm{BM} 15]$	$[\mathrm{ES} 87 \mid \mathrm{Göt01}]$	$(\chi)[\mathrm{OP} 21]$
singular curve	$(\mathrm{eg})[\mathrm{H.23}]$	$[\mathrm{GS14} \mathrm{BRV} 20]$,	$(\mathrm{eg})[\mathrm{HJ} 23]$
singular surface	open	$(\mathrm{eg}, \chi)[\mathrm{GNS17}]$	open

essentially... \quad matrix count \quad ideal count \quad submodule count
[FH58]: Fine and Herstein; count nilpotent matrices
[CL83]: Cohen and Lenstra
[well-known]: ideals of $k[[T]]$ are $\left(T^{n}\right) ; \mid \operatorname{Quot}_{1, n}(X)=\operatorname{Sym}^{n}(X)$.
[Sol77]: Solomon; lattice zeta function
[Bif89, etc.]: Bifet; generalizations by BFP20, MR22
[FF60]: Feit and Fine; count matrices $A B=B A$
[BM15]: Bryan and Morrison
[ES87]: Ellingsrud and Strømme; $\operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right)$
[Göt01]: Göttsche
[OP21]: Oprea and Pandharipande
[H.23]: H.; node case; count matrices $A B=B A=0$
[GS14]: Göttsche and Shende
[BRV20]: Bejleri, Ranganathan and Vakil
[GNS17]: Gyenge, Némenthi and Szendrői
*: not in motivic language
[local|global]: local and global results
(eg): known only for some (families of) examples
(χ) : known in terms of related invariants such as (virtual) Euler characteristics, but not motive

Singular curves

Let $Q_{d, X}(t)=\sum_{n=0}^{n}\left[\operatorname{Quot}_{d, n}(X)\right] t^{n}$ and $\widehat{Z}_{X}(t)=\sum_{n=0}^{n}\left[\operatorname{Coh}_{n}(X)\right] t^{n}$. Then $Q_{1, X}(t)$ satisfies

- Rationality: $Q_{1, X}(t)$ is rational with denominator dictated by the normalization of X (equivalently, numbers of branches around singularities). The numerator depends on the singularities only. [BRV20]
- Functional Equation: Under mild assumptions on the singularities, $Q_{1, X}(t)$ satisfies a functional equation $t \mapsto 1 /(\mathbb{L} t)$, which means the numerator has a certain symmetry. [GS14]
In [H. 23], I discovered a "rationality" statement for $\widehat{Z}_{X}(t)$ if X has only nodal singularities. Nothing was known for $Q_{d, X}(t)$ if X is singular and $d \geq 2$.

Goal
Investigate analogous phenomena for $Q_{d, X}(t)$ and $\widehat{Z}_{X}(t)$ for curve singularities in general.

Algebraic ingredient: Gröbner stratification

Let $X=\left\{x^{2}=y^{3}\right\}$ be the affine cusp curve. Now prove [HJ23].

- Recall Quot $_{d, n}(X)=\left\{\mathcal{O}_{X}^{d} \rightarrow M\right\}$. Taking the kernel, Quot $_{d, n}(X)=$ $\left\{N \subseteq \mathcal{O}_{X}^{d}: \mathcal{O}_{X}^{d} / K\right.$ has zero-dimensional support and length $\left.n\right\}$.
- Locally speaking, we are classifying submodules of R^{d} (where $R=k\left[\left[T^{2}, T^{3}\right]\right]$) of codimension n as a k-vector subspace.
- The theory of reduced Gröbner bases for power series ring (aka standard bases) does exactly this job. Here R is only a subring of $k[[T]]$, but the theory extends with minor modification.
- We stratify our moduli space into strata, each indexed by a "leading term datum" that is discrete and combinatorial.
- We try to classify submodules that belong to each stratum. This requires a Buchberger criterion to test if a submodule does have a prescribed leading term datum.
- It turns out that each stratum is parametrized by solutions of a matrix equation; we don't fully understand them, but we observe eventual stability.

Combinatorial ingredient: Spiral raising operator

- unmoved points
\odot origins of moved points
- destinations of moved points columns of moved points
- Motives of strata are eventually stable (up to correction) with respect to the "spiral raising operators" performed on the leading term data, essentially d-tuples.
- $\gamma_{(j)}(1 \leq j \leq d)$ fixes the lowest $j-1$ points and moves the rest.
- We show that these operators commute and act freely transitively.
- Upshot: Break the sum over all data into finitely many orbit sums!

Combining ingredients: Orbit sum

Our generating function is a sum of rational functions. Each orbit (marked by its box) contributes one. There are 2^{d} diagrams like this. Adding them all up proves our rationality theorem [HJ23]!

Results and conjectures for cusp $\left\{x^{2}=y^{3}\right\}$

- Our rationality theorem [HJ23] does not require knowing the motive of each stratum.
- But when $d \leq 3$, we do know, and our method computes $Q_{d, X}(t)$ explicitly when $d \leq 3$. For example,

$$
Q_{3, X}(t)=\frac{1+\left(\mathbb{L}^{3}+\mathbb{L}^{4}+\mathbb{L}^{5}\right) t^{2}+\left(\mathbb{L}^{6}+\mathbb{L}^{7}+\mathbb{L}^{8}\right) t^{4}+\mathbb{L}^{9} t^{6}}{(1-\mathbb{L} t)\left(1-\mathbb{L}^{2} t\right)\left(1-\mathbb{L}^{3} t\right)}
$$

- We observe a functional equation for $d \leq 3$ by inspecting the symmetry. We conjecture it holds for all d.
- Observed patterns in $d \geq 3$, if true for all d, uniquely determine a conjectured formula for all $Q_{d, X}(t)$, which would then imply a strikingly simple formula for $\widehat{Z}_{X}(t)$ via a theorem about the forgetful map Quot $_{d, n}(X) \rightarrow \operatorname{Coh}_{n}(X)$. The formula would confirm the "rationality" for $\widehat{Z}_{X}(t)$ and give the matrix count $\#\left\{A B=B A, A^{2}=B^{3}\right\}$ in $\operatorname{Mat}_{n}\left(\mathbb{F}_{q}\right)!$

Current and future work

- (Work with Jiang in progress; using lattice zeta functions) Conjecture: for the $x^{2}=y^{3}$ cusp, the numerator of $Q_{d, X}(t)$ is

$$
\sum_{j=0}^{d}\left[\begin{array}{l}
d \\
j
\end{array}\right]_{\mathbb{L}}\left(\mathbb{L}^{d} t^{2}\right)^{j}, \quad\left[\begin{array}{l}
d \\
j
\end{array}\right]_{\mathbb{L}}=[\operatorname{Gr}(j, d)] \text { the } q \text {-binomial coef. }
$$

The numerator of $\widehat{Z}_{X}(t)$ is $\sum_{n=0}^{\infty} \frac{\mathbb{L}^{-n^{2}} t^{2 n}}{\left(1-\mathbb{L}^{-1}\right) \ldots\left(1-\mathbb{L}^{-n}\right)}$.

- (Work with Jiang in progress; using lattice zeta functions) Conjecture: If X has only unibranched singularities, then $Q_{d, X}(t)$ is rational in t.
- (Work with Jiang in preparation; using Gröbner bases) For the node $X=\{x y=0\}$, we have a recursive formula for $Q_{d, X}(t)$.
- (Hard) Conjecture: If X is a Gorenstein and projective curve with arithmetic genus g_{a}, then we have the functional equation

$$
Q_{d, X}(t)=\left(\mathbb{L}^{d^{2}} t^{2 d}\right)^{g_{a}-1} Q_{d, X}\left(\mathbb{L}^{-d} t^{-1}\right)
$$

