q-series from counting matrix points

Yifeng Huang University of British Columbia huangy £emath. wbe.ca

Introduction

An (affine) variety over \mathbb{Z} is a system of polynomial equations $f_{1}\left(T_{1}, \ldots, T_{m}\right)=\cdots=f_{r}\left(T_{1}, \ldots, T_{m}\right)=0$ with integer coefficients. Counting finite-field points on varieties is of fundamental importance in number theory and arithmetic geometry.

Question. Can we count matrix points?
Definition (Matrix point). Given $n \in \mathbb{Z}_{\geq 1}$ and finite field \mathbb{F}_{q}. A $\operatorname{Mat}_{n}\left(\mathbb{F}_{q}\right)$-point on the said variety is a tuple of pairwise commuting matrices $\underline{A}=\left(A_{1}, \ldots, A_{m}\right)$ in $\operatorname{Mat}_{n}\left(\mathbb{F}_{q}\right)$ such that $f_{j}(\underline{A})=O_{n \times n}$ for all j.

Short answer. Yes, for smooth curves, smooth surfaces, and some singular curves(!!!). And partitions appear in the formulas.

EXAMPLE: MATRIX POINTS ON PLANE

Theorem (Feit-Fine, '60).

$$
\sum_{n \geq 0} \frac{\left|\left\{(A, B) \in \operatorname{Mat}_{n}\left(\mathbb{F}_{q}\right)^{2}: A B=B A\right\}\right|}{\left|\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)\right|} t^{n}=\prod_{i, j \geq 1} \frac{1}{1-t^{i} q^{2-j}}
$$

Smooth varieties and Sato-Tate

Using geometric argument, one can bootstrap from Feit-Fine and get
Theorem 1 (H.). If the variety is smooth of dim ≤ 2 over \mathbb{F}_{q}, then its matrix point counts are determined by (usual) point counts over finite extensions of \mathbb{F}_{q}
More precisely, the analogous generating function counting its matrix points is an explicit infinite product in its zeta function.

This allows to lift deep theorems about finite-field point counts to matrix point counts. For example, consider the Legendre elliptic curve

$$
E_{\lambda}: y^{2}=x(x-1)(x-\lambda), \lambda \neq 0,1
$$

and the Alghren-Ono-Penniston K3 surface

$$
X_{\lambda}: s^{2}=x y(x+1)(y+1)(x+\lambda y), \lambda \neq 0,-1
$$

They are special, for their finite-field point counts are given by finitefield hypergeometric functions ${ }_{2} F_{1}^{\mathrm{ff}}$ and ${ }_{3} F_{2}^{\mathrm{ff}}$ respectively, and as $\boldsymbol{\lambda} \in \mathbb{F}_{\boldsymbol{q}}$ varies, the normalized error terms in the point counts follow Sato-Tate-type distributions (Ono-Saad-Saikia).

Theorem 2 (H.-Ono-Saad). For any fixed $n \in \mathbb{Z}_{\geq 1}$, analogous statements hold for $\operatorname{Mat}_{\boldsymbol{n}}\left(\mathbb{F}_{\boldsymbol{q}}\right)$-points on $\boldsymbol{E}_{\boldsymbol{\lambda}}$ and $\boldsymbol{X}_{\boldsymbol{\lambda}}$. In addition, the explicit formulas involve partitions of size up to n.

Theorem (Blaser-Bradley-Vargas-Xing). $\operatorname{Mat}_{\boldsymbol{n}}\left(\mathbb{F}_{\boldsymbol{p}}\right)$-point counts follow analogous distributions for fixed $\boldsymbol{E}_{\lambda}, \boldsymbol{X}_{\lambda}$ as we vary p.

Singular curves and Rogers-Ramanujan

Consider the singular curve $C_{k}: Y^{2}=X^{k}$ for $k \in \mathbb{Z}_{\geq 2}$.
Theorem 3 (H.-Jiang). A series $f_{k}(q, t) \in \mathbb{Z}\left[\left[q^{-1}, t\right]\right]$ encoding matrix point counts on C_{k} satisfies (i) $f_{k}(q, t)$ converges for $|q|>1, t \in$ \mathbb{C}; (ii) $f_{k}(q, 1)$ is a modular function in τ with $q^{-1}=e^{2 \pi i \tau}$.

The content is two-fold. On one hand, by giving $f_{k}(q, t)$, we ex plicit answer a wild linear algebra question: count solutions to $\boldsymbol{A B}=$ $B A, B^{2}=A^{k}$ for $\boldsymbol{A}, B \in \operatorname{Mat}_{n}\left(\mathbb{F}_{q}\right)$. On the other hand, the assertion that $f_{k}(q, 1)$ equals a modular function amounts to a Rogers-Ramanujan-type identity.

Example 4 (Andrews-Gordon from odd k). For $k=2 m+1$,

$$
f_{k}(q, t)=\sum_{\lambda: \lambda_{1} \leq m} \frac{t^{2|\lambda|}}{q^{\sum_{i \geq 1} \lambda_{i}^{\prime 2}} \prod_{i \geq 1}\left(q^{-1} ; q^{-1}\right)_{\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}}}
$$

so by an Andrews-Gordon identity

$$
f_{k}(q, 1)=\prod_{n \neq 0, \pm(m+1)} \prod_{(\bmod 2 m+3)}\left(1-q^{-n}\right)^{-1}
$$

Example 5 (New identity from even k). Let $g_{\mu}^{\lambda}(p)$ be the Hall polynomial counting type- μ subgroups of an abelian p-group of type λ.
$f_{2 m}\left(\frac{1}{q}, t\right)=(q t ; q)_{\infty}^{2} \sum_{\substack{\lambda, \mu \\ \lambda_{1} \leq m}} \frac{q^{\sum_{i \geq 1} \lambda_{i}^{\prime 2}} g_{\mu}^{\lambda}\left(q^{-1}\right)(q ; q)_{\lambda_{m}^{\prime}} t^{2|\lambda|-|\mu|}}{(q ; q)_{\mu_{m}^{\prime}}(q t ; q)_{\lambda_{m}^{\prime}}^{\prime} \prod_{i \geq 1}(q ; q)_{\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}}}$ and we prove the identity (indirectly; no direct proof yet!)

$$
\begin{equation*}
f_{2 m}(q, 1)=1 \tag{1}
\end{equation*}
$$

Conjecture. Analogue of Theorem 3 holds for all planar curves.

If true, the conjecture would produce a new framework for RogersRamanujan identities: take a planar singularity, find the series $f(q, t)$ by counting matrix points, and get
sum side $:=f(q, 1)=$ product side $:=$ modular function.

