
q-series from counting matrix points
Yifeng Huang University of British Columbia huangyf@math.ubc.ca

INTRODUCTION

An (affine) variety over Z is a system of polynomial equations
f1(T1, . . . , Tm) = · · · = fr(T1, . . . , Tm) = 0 with integer coeffi-
cients. Counting finite-field points on varieties is of fundamental im-
portance in number theory and arithmetic geometry.

Question. Can we count matrix points?

Definition (Matrix point). Given n ∈ Z≥1 and finite field Fq. A
Matn(Fq)-point on the said variety is a tuple of pairwise commuting
matrices A = (A1, . . . , Am) in Matn(Fq) such that fj(A) = On×n
for all j.

Short answer. Yes, for smooth curves, smooth surfaces, and some
singular curves(!!!). And partitions appear in the formulas.

EXAMPLE: MATRIX POINTS ON PLANE

Theorem (Feit–Fine, ’60).
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SMOOTH VARIETIES AND SATO–TATE

Using geometric argument, one can bootstrap from Feit–Fine and get

Theorem 1 (H.). If the variety is smooth of dim ≤ 2 over Fq, then its
matrix point counts are determined by (usual) point counts over finite
extensions of Fq.
More precisely, the analogous generating function counting its matrix
points is an explicit infinite product in its zeta function.

This allows to lift deep theorems about finite-field point counts to ma-
trix point counts. For example, consider the Legendre elliptic curve

Eλ : y2 = x(x − 1)(x − λ), λ ̸= 0, 1

and the Alghren–Ono–Penniston K3 surface

Xλ : s2 = xy(x + 1)(y + 1)(x + λy), λ ̸= 0,−1.

They are special, for their finite-field point counts are given by finite-
field hypergeometric functions 2F

ff
1 and 3F

ff
2 respectively, and as

λ ∈ Fq varies, the normalized error terms in the point counts follow
Sato–Tate-type distributions (Ono–Saad–Saikia).

Theorem 2 (H.–Ono–Saad). For any fixed n ∈ Z≥1, analogous
statements hold for Matn(Fq)-points on Eλ and Xλ. In addition,
the explicit formulas involve partitions of size up to n.

Theorem (Blaser–Bradley–Vargas–Xing). Matn(Fp)-point counts
follow analogous distributions for fixed Eλ, Xλ as we vary p.

SINGULAR CURVES AND ROGERS–RAMANUJAN

Consider the singular curve Ck : Y 2 = Xk for k ∈ Z≥2.

Theorem 3 (H.–Jiang). A series fk(q, t) ∈ Z[[q−1, t]] encoding ma-
trix point counts on Ck satisfies (i) fk(q, t) converges for |q| > 1, t ∈
C; (ii) fk(q, 1) is a modular function in τ with q−1 = e2πiτ .

The content is two-fold. On one hand, by giving fk(q, t), we ex-
plicit answer a wild linear algebra question: count solutions to AB =
BA,B2 = Ak for A,B ∈ Matn(Fq). On the other hand, the as-
sertion that fk(q, 1) equals a modular function amounts to a Rogers–
Ramanujan-type identity.

Example 4 (Andrews–Gordon from odd k). For k = 2m + 1,

fk(q, t) =
∑

λ:λ1≤m
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∏
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,

so by an Andrews–Gordon identity

fk(q, 1) =
∏

n̸≡0,±(m+1) (mod 2m+3)

(1 − q−n)−1.

Example 5 (New identity from even k). Let gλµ(p) be the Hall polyno-
mial counting type-µ subgroups of an abelian p-group of type λ.
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and we prove the identity (indirectly; no direct proof yet!)

f2m(q, 1) = 1. (1)

Conjecture. Analogue of Theorem 3 holds for all planar curves.

If true, the conjecture would produce a new framework for Rogers–
Ramanujan identities: take a planar singularity, find the series f(q, t)
by counting matrix points, and get

sum side := f(q, 1) = product side := modular function.
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