# Vector Fields and Cohomology 

Jim Carrell

The Bott Residue Theorem [B67] (see also [C03]) says that a holomorphic vector $V$ with simple isolated zeroes on a compact complex manifold $M$ determines the Chern numbers of $M$ as sums of residues over the zero set $Z$ of $V$ determined by how $V$ behaves near $Z$. Note, a holomorphic vector field $V$ on $M$ is a holomorphic section of the holomorphic tangent bundle of $M$. A zero $x$ of $V$ is simple if on a neighbourhood $U$ of $x, \operatorname{dim} C[U] /\left(a_{1}, \ldots, a_{n}\right)=1$, where $a_{1}, \ldots, a_{n}$ are the coefficients of $V$ on $U$. The simplest condition which implies $V$ has only simple isolated zeros $Z$ is that $V$ is generated by a $G_{m}$-action $\lambda: \mathbb{C}^{*} \rightarrow \operatorname{Aut}(M)$ with isolated fixed point set $Z$.

The BRF has turned out to be important in enumerative geometry, for example in work of Ellingsrud-Stromme [JAMS96] and Konsevitch. Bott's proof inspired the following generalization, which follows from considering the spectral sequence associated to the contraction operator $i(V): \Omega^{p} \rightarrow \Omega^{p-1}$. The crucial fact is that if $M$ is a compact Kaehler manifold and $Z$ is non trivial, then this spectral sequences degenerates at $d_{1}$. That is, $d_{i}=0$ for all $i$. For defininiteness, we will assume our holomorphic vector field arises from a $G_{m}$-action with fixed points.

Theorem 1 (CL73,CL77). Let $M$ be a compact Kaehler manifold of dimension $n$ having a $G_{m}$-action with non trivial fixed point set $Z$. Then $H^{p}\left(M, \Omega^{q}\right)=0$ if $|p-q|>\operatorname{dim} Z$. Suppose $Z$ is finite. Then the Hodge decomposition theorem implies $H^{*}(M)=\bigoplus_{p \geq 0} H^{2 p}(M)=\bigoplus_{p \geq 0} H^{p}\left(M, \Omega^{p}\right)$. Moreover, the set $\mathbb{C}^{Z}$ of $\mathbb{C}$-valued functions on $Z$ has a filtration

$$
0=F_{-1} \subset F_{1}=\mathbb{C} \subset F_{2} \subset \cdots \subset F_{n}=\mathbb{C}^{Z}
$$

such that $F_{i} F_{j} \subseteq F_{i+j}$ and there are graded algebra isomorphisms

$$
H^{*}(M)=\bigoplus_{p \geq 0} H^{2 p}(M) \cong \bigoplus_{p \geq 0} F_{p} / F_{p-1}=\operatorname{Gr}_{F} \mathbb{C}^{Z}
$$

If $Z$ is finite, then $M$ is necessarily projective since $H^{2}(M)=H^{1}\left(M, \Omega^{1}\right)$. So from now on, we will denote $M$ by $X$.

Example 2. Let $X=\mathbb{P}^{n}$ and consider the $G_{m}$-action

$$
t \cdot\left[z_{0}, \ldots, z_{n}\right]=\left[t^{a_{0}} z_{0}, \ldots, t^{a_{n}} z_{n}\right]
$$

where all $a_{i}$ are distinct. Then $Z=\{[1,0, \ldots, 0], \ldots,[0, \ldots, 0,1]\}$. The element $f \in \mathbb{C}^{Z}$ defined by $f\left(\left[e_{i}\right]\right)=a_{i}$ has the property that in the isomorphism above, $f$ represents $c_{1}(H)$ in the associated graded, where $H$ is a hyperplane section in $\mathbb{P}^{n}$. Moreover, $F_{i}=\mathbb{C} \oplus \mathbb{C} f \oplus \cdots \oplus \mathbb{C} f^{i-1}$. Note how the VanDerMonde determiinant plays a role.

When $Z$ is infinite, we still get an interesting result when $H^{p}\left(X, \Omega^{q}\right)=0$ for $p \neq q$. In that case, we also have $H^{p}\left(Z, \Omega^{q}\right)=0$ for $p \neq q$, and the cohomology of $X$ is computed on $Z$ as follows:

Theorem 3 (ACL86). Suppose $H^{p}\left(X, \Omega^{q}\right)=0$ if $p \neq q$. Then $H^{p}\left(Z, \Omega^{r}\right)=0$ if $p \neq r$ and the graded algebra $H^{*}(Z)$ admits an increasing filtration $G$. such that

$$
H^{*}(X) \cong \operatorname{Gr}_{G .} H^{*}(Z)
$$

This theorem enables us to study $G_{m}$-stable subvarieties $Y$ of $X$ such that $Y^{G_{m}}$ is finite

Theorem 4 (ACL86). Let $Y$ be a Zariski closed $G_{m}$-stable subset of $X$ such that $Y^{G_{m}}$ is finite and the cohomology restriction maps $H^{*}(X) \rightarrow H^{*}(Y)$ and $H^{0}\left(X^{G_{m}}\right) \rightarrow$ $H^{0}\left(Y^{G_{m}}\right)$ are surjective. Note: the latter assumption implies no component of $X^{G_{m}}$ contains more than one element of $Y^{G_{m}}$. Then the filtration of $H^{*}\left(X^{G_{m}}\right)$ pulled back to $H^{0}\left(Y^{G_{m}}\right)$ gives an isomorphism of graded rings

$$
\operatorname{Gr} H^{0}\left(Y^{G_{m}}\right) \rightarrow H^{*}(Y)
$$

Schubert varieties and Springer varieties in a flag variety $G / B$ are two interesting cases. Let $T \subset B \subset G$ be a maximal torus $T$ in a Borel (that is, maximal connected solvable) subgroup $B$ of a connected semisimple algebraic group $G$ over $\mathbb{C}$. The $G$-homogeneous space $G / B$ is a projective variety, and the Weyl group of $T$, defined as $N_{G}(T) / T$, is a finite reflection group such that $(G / B)^{T}=W B$ via the bijection $w \rightarrow w B$. Hence, $H^{p}\left(G / B, \Omega^{q}\right)=0$ if $p \neq q$.

Example 5. The standard example has $G=G L(n, \mathbb{C}), B$ the upper triangular elements of $G$ and $T$ the torus on the diagonal of $G$. Then $G / B$ is the variety of all full flags in $\mathbb{C}^{n}$, and $W$ is the set of all $n \times n$ permutation matrices. The $T$-fixed flags are the column flags of the permutation matrices.

The Schubert variety $X_{w}(w \in W)$ is the Zariski closure of the $B$-orbit $B w B$. Schubert varieties are in general singular but are $T$-stable and $H^{*}(G / B) \rightarrow H^{*}\left(X_{w}\right)$ is always surjective. The $T$-fixed points in $X_{w}$ define a Bruhat interval $[e, w]$ in $W$. Now consider a $G_{m}$-action $(S, G / B)$, where $S \subset T$ and $(G / B)^{S}=W B$, say $S=\exp (s)$ where $s \in \operatorname{Lie}(T)$ is regular. Thus, we get

Theorem 6 (ACL86). For any Schubert variety $X_{w}$ in $G / B$ and any $w \in W$,

$$
H^{*}\left(X_{w}\right) \cong \operatorname{Gr} \mathbb{C}^{[e, w]}
$$

Moreover, the filtration of $\mathbb{C}^{[e, w]}$ arises in a natural way. Since $\mathbb{C}^{[e, w]} \cong \mathbb{C}([e, w] \cdot s)$ and $[e, w] \cdot s$ is a closed subset of Lie $(T)$, we have a natural filtration $F_{i} \subset$ $\mathbb{C}([e, w] \cdot s)$, namely, $F_{i}$ is defined to be the elements which are restrictions of polynomials on Lie $(T)$ of degree at most $i$. Then this filtration is the image of the filtration of $\mathbb{C}^{[e, w]}$, and therefore we obtain a natural description

$$
H^{*}\left(X_{w}\right) \cong \operatorname{Gr} \mathbb{C}([e, w] \cdot s)
$$

In particular, $G / B$ itself is a Schubert variety. Hence

$$
H^{*}(G / B) \cong \operatorname{Gr} \mathbb{C}(W \cdot h)
$$

for the natural filtration of $\mathbb{C}(W \cdot h)$, where $h \in \operatorname{Lie}(T)$ is regular in the sense that the $G_{m}$ defined by $h$ has $\left.G / B\right)^{G_{m}}=(G / B)^{T}$. From this one deduces without too
much difficulty the classical description of $H^{*}(G / B)$ as the coinvariant algebra $\mathbb{C}($ Lie $) T) / I^{W}$, where $I^{W}$ is the ideal generated by homogeneous $W$-invariants.

Here is a more intriguing application. A famous result of T. A. Springer says that if $X$ is a Springer variety in $G / B$, then the Weyl group $W$ of $G$ acts on the cohomology algebra $H^{*}(X)$. The definition of Springer's action quite remarkable since it doesn't arise from an action of $W$ on $X$. In addition, every irreducible representation of $W$ is realized on the middle dimension of some Springer variety. We will explain below how in some important cases, the $W$-action on $H^{*}(X)$ can be described in a natural way using a certain $G_{m}$-action on $G / B$.

First note that by a fundamental result of Borel, $G / B$ parameterizes the set $\mathbb{B}$ of all Borels in $G$ via the bijection $g B \rightarrow g B g^{-1}$. Thus, we may identify the flag variety $G / B$ with $\mathbb{B}$. Let $\mathfrak{g}$ be the Lie algebra of $G$ and let $\mathcal{N} \subset \mathfrak{g}$ the nilpotent cone consisting of the closed (and normal) variety of all nilpotents in $\mathfrak{g}$. $G$ acts on $\mathcal{N}$ by conjugation with a unique orbit called the regular nilpotent orbit. If $n$ is nilpotent, the Springer variety $\mathbb{B}_{n} \subset \mathbb{B}$ is defined to be the set of all Borels whose Lie algebra contains $n$. It is well known that $\mathbb{B}_{n}$ is closed in $\mathbb{B}$ and is connected for all $n$. Note that except for the obvious cases $n=0$, where $\mathbb{B}_{n}=\mathbb{B}$, and $n$ regular, where $\mathbb{B}_{n}$ is a point, $\mathbb{B}_{n}$ has more than one irreducible component.

Example 7. In the standard case $G=G L(n, \mathbb{C})$, a nilpotent whose J.C.F. has rank $n-2$ is called subregular. If $n$ is subregular, then $\mathbb{B}_{n} \subset G L(n, \mathbb{C}) / B$ is the union of $n \mathbb{P}^{1}$ 's whose intersection pattern is determined by the (dual) Dynkin diagram of type $A_{n}$. Subregular nilpotents $n$ are defined for arbitrary $G$, and if $n$ is subregular, then $\mathbb{B}_{n}$ is a general Dynkin curve, roughly as described above.

We now apply the above ideas to give a description of Springer's action. To do so, let us aassume $G=G L(n, \mathbb{C})$. Then, by a result of N. Spaltenstein [Sp76], the inclusion $\mathbb{B}_{n} \subset \mathbb{B}$ induces a surjection $H^{*}(\mathbb{B}) \rightarrow H^{*}\left(\mathbb{B}_{n}\right)$ for all $n \in \mathcal{N}$. Moreover, for any $n \in \mathcal{N}$, there exists a semisimple $s \in \mathfrak{g l}(n, \mathbb{C})$ such that $[s, n]=0$ and $n+s$ is regular in the sense that $n+s$ is contained in only finitely many Borel subalgebras. This gives a torus action $(S, \mathbb{B})$ stabilizing $\mathbb{B}_{n}$ such that $\left(\mathbb{B}_{n}\right)^{S}$ is finite, and morever $H^{*}\left(\mathbb{B}^{S}\right) \rightarrow H^{*}\left(\left(\mathbb{B}_{n}\right)^{S}\right)$ is surjective. The interesting fact is that there exists a natural identification of $W \cdot s$ and $\left(\mathbb{B}_{n}\right)^{S}$. Hence one has $H^{*}\left(\left(\mathbb{B}_{n}\right)^{S}\right)=\mathbb{C}(W \cdot s)$. Consequently, Theorem 4 gives

Theorem 8 (C86). Suppose $G=G L(n, \mathbb{C})$ and $n \in \mathcal{N}$. Then

$$
H^{*}\left(\mathbb{B}_{n}\right) \cong \operatorname{Gr} \mathbb{C}(W \cdot s)
$$

where the filtration of $\mathbb{C}(W \cdot s)$ is the natural filtration by degree. Furthermore, the action of $W$ on $H^{*}\left(\mathbb{B}_{n}\right)$ is induced by the natural action of $W$ on $\mathbb{C}(\operatorname{Lie}(T))$ given by $w \cdot f(x)=f\left(w^{-1} \cdot x\right)$.

This discussion brings up two Problems. First, what is the Poincaré polynomial of $\operatorname{Gr} \mathbb{C}(W \cdot s)$ for any Weyl group orbit $W \cdot s$ where $s \in \operatorname{Lie}(T)$ ? Here $W$ can be any Weyl group. A sub problem, which doesn't seem to be trivial, is to determine the ideal $I(W \cdot s) \subset \mathbb{C}(\operatorname{Lie}(T))$ for arbitrary $W$ and $s \in \operatorname{Lie}(T)$. Secondly, describe all pairs $(G, n)$ such that $H^{*}(\mathbb{B}) \rightarrow H^{*}\left(\mathbb{B}_{n}\right)$ is surjective.

The problem of finding the Poincaré polynomial of $H^{*}\left(\mathbb{B}_{n}\right)$ can also be attacked from by using a result of DeConcini, Lusztig and Procesi [DLP88], which says that $\mathbb{B}_{n}$ always has an affine paving. But this paving is hard to describe.

In our final movement, we will consider holomorphic vector fields with exactly one zero. Unipotent actions, that is $G_{a}$-actions, sometimes have this property. Note: the fixed point set of a unipotent group is always connected. A $G_{a}$-action on $X$ is the algebraic action given by an algebraic homomorphism $\phi: \mathbb{C} \rightarrow \operatorname{Aut}(X)$. The holomorphic vector field on $X$ generated by a $G_{a}$ is said to be algebraic. A $G_{a}$-action on $X$ so that $\phi(\mathbb{C})$ has exactly one fixed point $o$ gives a holomorphic vector field with unique zero $o$.

Here is an example.
Example 9. Suppose $X=\mathbb{P}^{3}$, and let $\phi: \mathbb{C} \rightarrow \operatorname{Aut}\left(\mathbb{P}^{3}\right)$ be given by $\phi(s)=I_{4}+s J$, where $J$ is the $4 \times 4$ Jordan block of maximal rank 3. Then $\phi$ is an algebraic homomorphism. Explicity,

$$
\phi(s) \cdot\left[z_{0}, z_{1}, z_{2}, z_{3}\right]=\left[z_{0}+s z_{1}, z_{1}+s z_{2}, z_{2}+s z_{3}, z_{3}\right] .
$$

Note $o=[1,0,0,0]$ is $\phi$ 's unique fixed point. Now the algebraic vector field $V$ generated by $\phi$ has local expansion on the affine open $z_{0} \neq 0$ given by

$$
V=\left(u_{2}-u_{1}^{2}\right) \frac{\partial}{\partial u_{1}}+\left(u_{3}-u_{1} u_{2}\right) \frac{\partial}{\partial u_{2}}-u_{1} u_{3} \frac{\partial}{\partial u_{3}},
$$

using the standard affine coordinates $u_{i}=z_{i} / z_{0}$ for $i=1,2,3$. Clearly, its unique zero $o$ is not a simple zero, but we can consider $o$ as the punctual scheme in $X$ defined by the ideal $I(V)=\left(u_{2}-u_{1}^{2}, u_{3}-u_{1} u_{2}, u_{1} u_{3}\right) \subset \mathbb{C}\left[u_{1}, u_{2}, u_{3}\right]$. Notice that the coordinate ring $\mathcal{A}=\mathbb{C}\left[u_{1}, u_{2}, u_{3}\right] / I(V)$ of the punctual scheme $o$ is isomorphic with $\mathbb{C}\left[u_{1}\right] /\left(\left(u_{1}\right)^{4}\right)$, which is in fact isomorphic with $H^{*}\left(\mathbb{P}^{3}\right)$.

It remains to explain why $\mathcal{A}$ has a grading. To do so, we introduce the notion of a $\left(G_{a}, G_{m}\right)$ pair on $X$. Such a pair consists of algebraic one parameter groups $\phi: \mathbb{C} \rightarrow \operatorname{Aut}(X)$ and $\lambda: \mathbb{C}^{*} \rightarrow \operatorname{Aut}(X)$ such that $\lambda(t) \phi(s) \lambda(t)^{-1}=\phi\left(t^{2} s\right)$ for all $s, t$. A $\left(G_{a}, G_{m}\right)$ pair is clearly equivalent to an algebraic action of the upper triangular (Borel) subgroup $\mathfrak{B}$ of $\operatorname{SL}(2, \mathbb{C})$ on $X$. A $\left(G_{a}, G_{m}\right)$ pair is called regular when $X^{G_{a}}$ is a single point $\{o\}$. Assuming $(\phi, \lambda)$ is regular, put

$$
X_{o}=\left\{x \in X \mid \lim _{t \rightarrow \infty} \lambda(t) \cdot x=o\right\} .
$$

Then $X_{o}$ is a non empty $G_{m}$-stable affine open set, and the natural grading on $\mathbb{C}\left(X_{o}\right)$ is called the principal grading. Hence there exist coordinates $u_{1}, \ldots, u_{n}$ on $X_{o}$ such that $\mathbb{C}\left(X_{o}\right)=\mathbb{C}\left[u_{1}, \ldots, u_{n}\right]$ where the $u_{i}$ are homogeneous of positive degree with respect to the $G_{m}$-action on $\mathbb{C}\left(X_{o}\right)$.

In the above example, define a $G_{m}$-action $\lambda$ on $\mathbb{P}^{3}$ by

$$
\lambda(t) \cdot\left[z_{0}, z_{1}, z_{2}, z_{3}\right]=\left[t^{3} z_{0}, t^{1} z_{1}, t^{-1} z_{2}, t^{-3} z_{3}\right]=\left[z_{0}, t^{-2} z_{1}, t^{-4} z_{2}, t^{-6} z_{3}\right] .
$$

The action on the coordinates $\left(u_{1}, u_{2}, u_{3}\right)$ is thus $\lambda(t) \cdot u=\left(t^{-2} u_{1}, t^{-4} u_{2}, t^{-6} u_{3}\right)$, so the coordinate functions thus have degrees 2,4 and 6 respectively. Notice that the components of $V$ are also homogeneous of degrees 4,6 and 8 , so $I(V)$ is a homogeneous ideal. Therefore, $\mathcal{A}=\mathbb{C}\left[u_{1}\right] /\left(\left(u_{1}\right)^{4}\right)$ is a graded algebra with
$\operatorname{deg}\left(u_{1}\right)=2$. This justifies $H^{*}\left(\mathbb{P}^{3}\right) \cong \mathcal{A}$. The final step which is the identification of $u_{1}$ and the element of cohomology associated to a hyperplane section will not be explained here.

Whenever $X$ admits a regular $\left(G_{a}, G_{m}\right)$ pair, $X^{G_{m}}$ is finite and contains $o$ [C95]. Moreover, $X_{o}=\left\{x \in X \mid \lim _{t \rightarrow \infty} \lambda(t)=o\right\}$ is an affine open cell in $X$ and so there exist $G_{m}$-homogeneous coordinates $u_{1}, \ldots, u_{n}$ on $X_{o}$ of positive degree. We now state the main result.

Theorem 10 (AC87,AC89). Let X be a smooth projective variety over $\mathbb{C}$ of dimension $n$ admitting a regular $\left(G_{a}, G_{m}\right)$-action, and let $V$ be the algebraic vector field on $X$ generated by the $G_{a}$. Suppose $u_{1}, \ldots, u_{n}$ are homogeneous coordinates on $X_{o}$, and let $I(V) \subset \mathbb{C}\left[u_{1}, \ldots, u_{n}\right]$ be the ideal generated by $V\left(u_{1}\right), \ldots, V\left(u_{n}\right)$. Then for each $i, 1 \leq i \leq n, V\left(u_{i}\right)$ is homogeneous of degree $\operatorname{deg}\left(u_{i}\right)+2$, and there exists a graded ring isomorphism

$$
H^{*}(X) \cong \mathbb{C}\left[u_{1}, \ldots, u_{n}\right] / I(V) .
$$

Moreover, $V\left(u_{1}\right), \ldots, V\left(u_{n}\right)$ is a regular sequence, so

$$
P(X, t)=\prod_{1 \leq i \leq n} \frac{\left(1-t^{\operatorname{deg}\left(V\left(u_{i}\right)\right)}\right.}{\left(1-t^{\operatorname{deg}\left(u_{i}\right)}\right)}=\prod_{1 \leq i \leq n} \frac{\left(1-t^{\operatorname{deg}\left(u_{i}\right)+2}\right)}{\left(1-t^{\operatorname{deg}\left(u_{i}\right)}\right)}
$$

Examples of varieties that admit a regular $\left(G_{a}, G_{m}\right)$ pair include $G / B, G / P$ for all parabolics $P$ in $G$, Demazure varieties, smooth Schubert varieties and any smooth $\left(G_{a}, G_{m}\right)$ - stable subvariety $Y$ of a regular $\left(G_{a}, G_{m}\right)$-variety. Using this result in the case $G L(n, \mathbb{C}) / B$, an interesting description of $H^{*}\left(X_{w}\right)$ for all Schubert varieties $X_{w}$ using the Plucker relations [AAP92].

Surprisingly, if $T$ is the maximal diagonal torus for the $\mathfrak{B}$-action associated to a regular ( $G_{a}, G_{m}$ ), then the $T$-equivariant cohomology $H_{T}^{*}(X)$ has a nice description that under mild restrictions holds in the singular case too. We will briefly describe that here. Let $V$ and $W$ denote the holomorphic vector fields on $X$ given by $\phi$ and $\lambda$ respectively. Consider the holomorphic vector field on $X_{o} \times \mathbb{C}$ given by $Q(x, s)=V(x)+s W(x)$ and let $\mathcal{Z}=\operatorname{zero}(Q)$. If $s \neq 0$, then all zeros of $Q(x, s)$ are simple. However, the zero at $(o, 0)$ is non-simple. In fact, $\mathcal{Z}$ is an affine curve in $X_{o} \times \mathbb{C}$ with $\chi(X)$ components which are obtained from the set of $\mathfrak{B}$-stable curves in $X \times \mathbb{P}^{1}$ by removing the points infinity. Then we have

Theorem 11 (BC04,CK10). The coordinate ring $\mathbb{C}(\mathcal{Z})$ defined above is isomorphic with $H_{T}^{*}(X)$. Furthermore, if $Y \subset X$ is a Zariski closed $\mathfrak{B}$-stable subvariety of $X$ such that $H^{*}(X) \rightarrow H^{*}(Y)$ is surjective and $H^{*}(Y)$ is generated by Chern classes of $\mathfrak{B}$-equivariant vector bundles on $Y$, then we also have $H_{T}^{*}(Y) \cong \mathbb{C}\left(Z_{Y}\right)$, where $\mathcal{Z}_{Y}$ denotes $\mathcal{Z} \cap(Y \times \mathbb{C})$. Furthermore, the obvious diagram commutes.

A nice consequence of this result is a description of the equivariant cohomology of a Peterson variety. Finally, we remark that there is also a theory for $\left(G_{a}, G_{m}\right)$ varieties $X$ where $X^{G_{a}}$ isn't finite. (It is always connected, so $X^{G_{a}}$ is either one point or infinite.) In [BO03], the cohomology algebras of certain stable map spaces was obtained in this way.

## References

[B67] Bott, Raoul, Vector fields and characteristic numbers. Michigan Math. J.14(1967), 231-244.
[CL73] Carrell, J. B.; Lieberman, D. I., Holomorphic vector fields and Kaehler manifolds. Invent. Math.21(1973), 303-309.
[CL77] Carrell, J. B.; Lieberman, D. I., Vector fields and Chern numbers. Math. Ann.225(1977), no.3, 263-273.
[S76] Spaltenstein, N., The fixed point set of a unipotent transformation on the flag manifold. Nederl. Akad. Wetensch. Proc. Ser. A 79 Indag. Math.38(1976), no.5, 452-456.
[CL77] Carrell, J. B.; Lieberman, D. I., Vector fields and Chern numbers. Math. Ann.225(1977), no.3, 263-273.
[Springer78] Springer, T. A., A construction of representations of Weyl groups. Invent. Math.44(1978), no.3, 279Đ293.
[C81] Carrell, J. B. Vector fields and cohomology of G/B.Manifolds and Lie groups (Notre Dame, Ind., 1980), pp. 57-65 Progr. Math., 14 BirkhŁuser, Boston, MA, 1981
[ACL86] Akyildiz, E.; Carrell, J. B.; Lieberman, D. I., Zeros of holomorphic vector fields on singular spaces and intersection rings of Schubert varieties. Compositio Mathematica, Volume 57 (1986) no. 2, pp. 237-248.
[C86] Carrell, J. B., Orbits of the Weyl group and a theorem of De Concini and Procesi. Compositio Math.60(1986), no.1, 45-52.
[AC87] Akyildiz, E.; Carrell, J. B., Cohomology of projective varieties with regular SL2 actions. Manuscripta Math.58(1987), no.4, 473-486.
[DLP88] De Concini, C.; Lusztig, G.; Procesi, C., Homology of the zero-set of a nilpotent vector field on a flag manifold. J. Amer. Math. Soc.1(1988), no.1, 15-34.
[AC89] Akyildiz, E.; Carrell, J. B., A generalization of the Kostant-Macdonald identity. Proc. Nat. Acad. Sci. U.S.A.86(1989), no.11, 3934-3937.
[C92] Carrell, James B., Some remarks on regular Weyl group orbits and the cohomology of Schubert varieties.Kazhdan-Lusztig theory and related topics (Chicago, IL, 1989), 33Đ41. Contemp. Math., 139 American Mathematical Society, Providence, RI, 1992
[AAP92] E. Akyildiz; A. Lascoux; and P. Pragacz, Cohomology of Schubert subvarieties of $G L(n) / P$. J. Differential Geometry 35 (1992), 511-519.
[C95] Carrell, J.B., Deformation of the nilpotent zero scheme and the intersection ring of invariant subvarieties. J. Reine Angew. Math.460(1995), 37-54.
[C03] Carrell, James B., Torus actions and cohomology. Encyclopaedia Math. Sci., 131 Invariant Theory Algebr. Transform. Groups, II Springer-Verlag, Berlin, 2002
[BO03] Behrend, K.; O'Halloran, A. On the cohomology of stable map spaces. Invent. Math. 154 (2003), no. 2, 385-450.
[BC04] Brion, Michel; Carrell, James B. The equivariant cohomology ring of regular varieties. Michigan Math. J.52(2004), no.1, 189-203.
[CK08] Carrell, J. B.; Kaveh, Kiumars, On the equivariant cohomology of subvarieties of a $\mathfrak{B}$-regular variety Transform. Groups 13 (2008), no. 3-4, 495-505.
[AC12] Akyildiz, E.; Carrell, J. B., Betti numbers of smooth Schubert varieties and the remarkable formula of Kostant, Macdonald, Shapiro, and Steinberg. Michigan Math. J.61(2012), no.3, 543 - 553.

