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The Bott Residue Theorem [B67] (see also [C03]) says that a holomorphic vector
V with simple isolated zeroes on a compact complex manifold M determines the
Chern numbers of M as sums of residues over the zero set Z of V determined by
how V behaves near Z . Note, a holomorphic vector field V on M is a holomorphic
section of the holomorphic tangent bundle of M . A zero x of V is simple if on
a neighbourhood U of x, dim C[U]/(a1, . . . , an) = 1, where a1, . . . , an are the
coefficients of V on U. The simplest condition which implies V has only simple
isolated zeros Z is that V is generated by a Gm-action λ : C∗ → Aut(M) with
isolated fixed point set Z .

The BRF has turned out to be important in enumerative geometry, for example
in work of Ellingsrud-Stromme [JAMS96] and Konsevitch. Bott’s proof inspired
the following generalization, which follows from considering the spectral sequence
associated to the contraction operator i(V ) : Ωp → Ωp−1. The crucial fact is that if
M is a compact Kaehler manifold and Z is non trivial, then this spectral sequences
degenerates at d1. That is, di = 0 for all i. For defininiteness, we will assume our
holomorphic vector field arises from a Gm-action with fixed points.

Theorem 1 (CL73,CL77). Let M be a compact Kaehler manifold of dimension
n having a Gm-action with non trivial fixed point set Z . Then Hp (M,Ωq) = 0
if |p − q | > dim Z . Suppose Z is finite. Then the Hodge decomposition theorem
implies H∗(M) =

⊕
p≥0 H2p (M) =

⊕
p≥0 Hp (M,Ωp). Moreover, the set CZ of

C-valued functions on Z has a filtration
0 = F−1 ⊂ F1 = C ⊂ F2 ⊂ · · · ⊂ Fn = C

Z

such that FiFj ⊆ Fi+j and there are graded algebra isomorphisms

H∗(M) =
⊕
p≥0

H2p (M) �
⊕
p≥0

Fp/Fp−1 = GrF CZ .

If Z is finite, then M is necessarily projective since H2(M) = H1(M,Ω1). So
from now on, we will denote M by X .

Example 2. Let X = Pn and consider the Gm-action
t · [z0, . . . , zn] = [ta0 z0, . . . , tan zn],

where all ai are distinct. Then Z = {[1, 0, . . . , 0], . . . , [0, . . . , 0, 1]}. The element
f ∈ CZ defined by f ([ei]) = ai has the property that in the isomorphism above, f
represents c1(H) in the associated graded, where H is a hyperplane section in Pn.
Moreover, Fi = C ⊕ C f ⊕ · · · ⊕ C f i−1. Note how the VanDerMonde determiinant
plays a role.

When Z is infinite, we still get an interesting result when Hp (X,Ωq) = 0 for
p , q. In that case, we also have Hp (Z,Ωq) = 0 for p , q, and the cohomology of
X is computed on Z as follows:
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Theorem 3 (ACL86). Suppose Hp (X,Ωq) = 0 if p , q. Then Hp (Z,Ωr ) = 0 if
p , r and the graded algebra H∗(Z ) admits an increasing filtration G · such that

H∗(X ) � GrG· H∗(Z ).

This theorem enables us to study Gm-stable subvarieties Y of X such that YGm

is finite

Theorem 4 (ACL86). LetY be aZariski closedGm-stable subset of X such thatYGm

is finite and the cohomology restriction maps H∗(X ) → H∗(Y ) and H0(XGm ) →
H0(YGm ) are surjective. Note: the latter assumption implies no component of XGm

contains more than one element of YGm . Then the filtration of H∗(XGm ) pulled
back to H0(YGm ) gives an isomorphism of graded rings

Gr H0(YGm ) → H∗(Y ).

Schubert varieties and Springer varieties in a flag variety G/B are two interesting
cases. Let T ⊂ B ⊂ G be a maximal torus T in a Borel (that is, maximal connected
solvable) subgroup B of a connected semisimple algebraic group G over C. The
G-homogeneous spaceG/B is a projective variety, and theWeyl group ofT , defined
as NG (T )/T , is a finite reflection group such that (G/B)T = W B via the bijection
w → wB. Hence, Hp (G/B,Ωq) = 0 if p , q.

Example 5. The standard example has G = GL(n,C), B the upper triangular
elements of G and T the torus on the diagonal of G. Then G/B is the variety of
all full flags in Cn, and W is the set of all n × n permutation matrices. The T-fixed
flags are the column flags of the permutation matrices.

The Schubert variety Xw (w ∈ W ) is the Zariski closure of the B-orbit BwB.
Schubert varieties are in general singular but areT-stable and H∗(G/B) → H∗(Xw)
is always surjective. The T-fixed points in Xw define a Bruhat interval [e,w] in
W . Now consider a Gm-action (S,G/B), where S ⊂ T and (G/B)S = W B, say
S = exp(s) where s ∈ Lie(T ) is regular. Thus, we get

Theorem 6 (ACL86). For any Schubert variety Xw in G/B and any w ∈ W ,

H∗(Xw) � GrC[e,w].

Moreover, the filtration ofC[e,w] arises in a natural way. SinceC[e,w] � C([e,w] · s)
and [e,w] · s is a closed subset of Lie(T ), we have a natural filtration Fi ⊂

C([e,w] · s), namely, Fi is defined to be the elements which are restrictions of
polynomials on Lie(T ) of degree at most i. Then this filtration is the image of the
filtration of C[e,w], and therefore we obtain a natural description

H∗(Xw) � GrC([e,w] · s).

In particular, G/B itself is a Schubert variety. Hence

H∗(G/B) � GrC(W · h)

for the natural filtration of C(W · h), where h ∈ Lie(T ) is regular in the sense that
the Gm defined by h has G/B)Gm = (G/B)T . From this one deduces without too
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much difficulty the classical description of H∗(G/B) as the coinvariant algebra
C(Lie)T )/IW , where IW is the ideal generated by homogeneous W -invariants.

Here is a more intriguing application. A famous result of T. A. Springer says
that if X is a Springer variety in G/B, then the Weyl group W of G acts on the
cohomology algebra H∗(X ). The definition of Springer’s action quite remarkable
since it doesn’t arise from an action of W on X . In addition, every irreducible
representation of W is realized on the middle dimension of some Springer variety.
We will explain below how in some important cases, the W -action on H∗(X ) can
be described in a natural way using a certain Gm-action on G/B.

First note that by a fundamental result of Borel, G/B parameterizes the set B
of all Borels in G via the bijection gB → gBg−1. Thus, we may identify the flag
variety G/B with B. Let g be the Lie algebra of G and letN ⊂ g the nilpotent cone
consisting of the closed (and normal) variety of all nilpotents in g. G acts onN by
conjugation with a unique orbit called the regular nilpotent orbit. If n is nilpotent,
the Springer variety Bn ⊂ B is defined to be the set of all Borels whose Lie algebra
contains n. It is well known that Bn is closed in B and is connected for all n. Note
that except for the obvious cases n = 0, where Bn = B, and n regular, where Bn is
a point, Bn has more than one irreducible component.

Example 7. In the standard case G = GL(n,C), a nilpotent whose J.C.F. has rank
n − 2 is called subregular. If n is subregular, then Bn ⊂ GL(n,C)/B is the union
of n P1’s whose intersection pattern is determined by the (dual) Dynkin diagram of
type An. Subregular nilpotents n are defined for arbitrary G, and if n is subregular,
then Bn is a general Dynkin curve, roughly as described above.

We now apply the above ideas to give a description of Springer’s action. To do
so, let us aassume G = GL(n,C). Then, by a result of N. Spaltenstein [Sp76], the
inclusion Bn ⊂ B induces a surjection H∗(B) → H∗(Bn) for all n ∈ N . Moreover,
for any n ∈ N , there exists a semisimple s ∈ gl(n,C) such that [s, n] = 0 and n+ s is
regular in the sense that n + s is contained in only finitely many Borel subalgebras.
This gives a torus action (S,B) stabilizing Bn such that (Bn)S is finite, and morever
H∗(BS) → H∗((Bn)S) is surjective. The interesting fact is that there exists a
natural identification of W · s and (Bn)S . Hence one has H∗((Bn)S) = C(W · s).
Consequently, Theorem 4 gives

Theorem 8 (C86). Suppose G = GL(n,C) and n ∈ N . Then
H∗(Bn) � GrC(W · s),

where the filtration of C(W · s) is the natural filtration by degree. Furthermore, the
action of W on H∗(Bn) is induced by the natural action of W on C(Lie(T )) given
by w · f (x) = f (w−1 · x).

This discussion brings up two Problems. First, what is the Poincaré polynomial
of GrC(W · s) for any Weyl group orbit W · s where s ∈ Lie(T )? Here W can be
any Weyl group. A sub problem, which doesn’t seem to be trivial, is to determine
the ideal I (W · s) ⊂ C(Lie(T )) for arbitrary W and s ∈ Lie(T ). Secondly, describe
all pairs (G, n) such that H∗(B) → H∗(Bn) is surjective.
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The problem of finding the Poincaré polynomial of H∗(Bn) can also be attacked
from by using a result of DeConcini, Lusztig and Procesi [DLP88], which says that
Bn always has an affine paving. But this paving is hard to describe.

In our final movement, we will consider holomorphic vector fields with exactly
one zero. Unipotent actions, that is Ga-actions, sometimes have this property.
Note: the fixed point set of a unipotent group is always connected. A Ga-action on
X is the algebraic action given by an algebraic homomorphism φ : C → Aut(X ).
The holomorphic vector field on X generated by a Ga is said to be algebraic. A
Ga-action on X so that φ(C) has exactly one fixed point o gives a holomorphic
vector field with unique zero o.

Here is an example.

Example 9. Suppose X = P3, and let φ : C→ Aut(P3) be given by φ(s) = I4 + sJ,
where J is the 4 × 4 Jordan block of maximal rank 3. Then φ is an algebraic
homomorphism. Explicity,

φ(s) · [z0, z1, z2, z3] = [z0 + sz1, z1 + sz2, z2 + sz3, z3].
Note o = [1, 0, 0, 0] is φ’s unique fixed point. Now the algebraic vector field V
generated by φ has local expansion on the affine open z0 , 0 given by

V = (u2 − u2
1)

∂

∂u1
+ (u3 − u1u2)

∂

∂u2
− u1u3

∂

∂u3
,

using the standard affine coordinates ui = zi/z0 for i = 1, 2, 3. Clearly, its unique
zero o is not a simple zero, but we can consider o as the punctual scheme in X
defined by the ideal I (V ) = (u2 − u2

1, u3 − u1u2, u1u3) ⊂ C[u1, u2, u3]. Notice that
the coordinate ringA = C[u1, u2, u3]/I (V ) of the punctual scheme o is isomorphic
with C[u1]/((u1)4), which is in fact isomorphic with H∗(P3).

It remains to explain why A has a grading. To do so, we introduce the notion
of a (Ga,Gm) pair on X . Such a pair consists of algebraic one parameter groups
φ : C → Aut(X ) and λ : C∗ → Aut(X ) such that λ(t)φ(s)λ(t)−1 = φ(t2s) for
all s, t. A (Ga,Gm) pair is clearly equivalent to an algebraic action of the upper
triangular (Borel) subgroupB of SL(2,C) on X . A (Ga,Gm) pair is called regular
when XGa is a single point {o}. Assuming (φ, λ) is regular, put

Xo = {x ∈ X | lim
t→∞

λ(t) · x = o}.

Then Xo is a non emptyGm-stable affine open set, and the natural grading onC(Xo)
is called the principal grading. Hence there exist coordinates u1, . . . , un on Xo such
that C(Xo) = C[u1, . . . , un] where the ui are homogeneous of positive degree with
respect to the Gm-action on C(Xo).

In the above example, define a Gm-action λ on P3 by

λ(t) · [z0, z1, z2, z3] = [t3z0, t1z1, t−1z2, t−3z3] = [z0, t−2z1, t−4z2, t−6z3].
The action on the coordinates (u1, u2, u3) is thus λ(t) · u = (t−2u1, t−4u2, t−6u3),
so the coordinate functions thus have degrees 2,4 and 6 respectively. Notice that
the components of V are also homogeneous of degrees 4,6 and 8, so I (V ) is
a homogeneous ideal. Therefore, A = C[u1]/((u1)4) is a graded algebra with
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deg(u1) = 2. This justifies H∗(P3) � A. The final step which is the identification
of u1 and the element of cohomology associated to a hyperplane section will not be
explained here.

Whenever X admits a regular (Ga,Gm) pair, XGm is finite and contains o [C95].
Moreover, Xo = {x ∈ X | limt→∞ λ(t) = o} is an affine open cell in X and so there
exist Gm-homogeneous coordinates u1, . . . , un on Xo of positive degree. We now
state the main result.

Theorem 10 (AC87,AC89). Let X be a smooth projective variety over C of dimen-
sion n admitting a regular (Ga,Gm)-action, and let V be the algebraic vector field
on X generated by the Ga. Suppose u1, . . . , un are homogeneous coordinates on
Xo, and let I (V ) ⊂ C[u1, . . . , un] be the ideal generated by V (u1), . . . ,V (un). Then
for each i, 1 ≤ i ≤ n, V (ui) is homogeneous of degree deg(ui) + 2, and there exists
a graded ring isomorphism

H∗(X ) � C[u1, . . . , un]/I (V ).

Moreover, V (u1), . . . ,V (un) is a regular sequence, so

P(X, t) =
∏

1≤i≤n

(1 − tdeg(V (ui ))

(1 − tdeg(ui ))
=
∏

1≤i≤n

(1 − tdeg(ui )+2)
(1 − tdeg(ui ))

,

Examples of varieties that admit a regular (Ga,Gm) pair include G/B, G/P
for all parabolics P in G, Demazure varieties, smooth Schubert varieties and any
smooth (Ga,Gm)- stable subvariety Y of a regular (Ga,Gm)-variety. Using this
result in the case GL(n,C)/B, an interesting description of H∗(Xw) for all Schubert
varieties Xw using the Plucker relations [AAP92].

Surprisingly, if T is the maximal diagonal torus for the B-action associated to a
regular (Ga,Gm), then theT-equivariant cohomology H∗T (X ) has a nice description
that under mild restrictions holds in the singular case too. We will briefly describe
that here. Let V and W denote the holomorphic vector fields on X given by φ
and λ respectively. Consider the holomorphic vector field on Xo × C given by
Q(x, s) = V (x) + sW (x) and let Z = zero(Q). If s , 0, then all zeros of Q(x, s)
are simple. However, the zero at (o, 0) is non-simple. In fact,Z is an affine curve in
Xo × C with χ(X ) components which are obtained from the set of B-stable curves
in X × P1 by removing the points infinity. Then we have

Theorem 11 (BC04,CK10). The coordinate ringC(Z) defined above is isomorphic
with H∗T (X ). Furthermore, if Y ⊂ X is a Zariski closed B-stable subvariety of X
such that H∗(X ) → H∗(Y ) is surjective and H∗(Y ) is generated by Chern classes
of B-equivariant vector bundles on Y , then we also have H∗T (Y ) � C(ZY ), where
ZY denotesZ ∩ (Y × C). Furthermore, the obvious diagram commutes.

A nice consequence of this result is a description of the equivariant cohomology
of a Peterson variety. Finally, we remark that there is also a theory for (Ga,Gm)-
varieties X where XGa isn’t finite. (It is always connected, so XGa is either one
point or infinite.) In [BO03], the cohomology algebras of certain stable map spaces
was obtained in this way.
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