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Introduction

For a topological space X and an integer n ≥ 0, define the ordered
configuration space as

F (X,n) := {(x1, . . . , xn) ∈ Xn : xi 6= xj for i 6= j}

and the (unordered) configuration space as the topological quotient

Confn(X) := F (X,n)/Sn.

An important subject in topology is to study the structure of Confn(X).
Various invariants, including the homotopy groups and the singular
(co)homology groups, give rich information.

In this talk, we focus on the cohomology groups.
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What do configuration spaces look like?

F (X,n) := {(x1, . . . , xn) ∈ Xn : xi 6= xj for i 6= j}

Confn(X) := F (X,n)/Sn.

First of all, Conf0(X) = {pt},Conf1(X) = X.
For n ≥ 2, it is in general hard to visualize Confn(X) due to the quotient,
but if X = R2 = C, we can use Cn/Sn

∼= Cn and get
1 Conf2(C) ∼= C× C×, homotopy equivalent to S1. (elementary)
2 Conf3(C) is homotopy equivalent to S3 minus a trefoil knot.
3 Confn(C) is isomorphic to Cn minus the “discriminant hypersurface”

cut out by one polynomial equation. (complicated for n ≥ 3)

On the other hand, their singular cohomology has a much simpler answer.

Theorem (Arnol’d ’69)

H0(Confn(C),Z) = Z for all n ≥ 0, H1(Confn(C),Z) = Z for all n ≥ 2,
and H i(Confn(C),Q) = 0 for all other choice of i and n.
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A splitting phenomenon

It appears that for many spaces X, puncturing has a consistent effect on
the cohomology groups of its configuration spaces. Here, X − P always
means X with an arbitrary point P ∈ X removed.

Theorem (Goryunov ’78, X = R2)

H i(Confn(R2 − P ),Z) ∼=
∞⊕
t=0

H i−t(Confn−t(R2),Z)

Theorem (?, X = Rd)

H i(Confn(Rd − P ),Q) ∼=
∞⊕
t=0

H i−(d−1)t(Confn−t(Rd),Q)

Theorem (Fuchs ’74, X a plane with punctures)

A similar “stable” formula, i.e. valid for Conf∞, or Confn with n� 0.
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A splitting phenomenon

Theorem (Napolitano ’03, X basically any nonclosed surface)

Let M be a surface (not necessarily orientable, possibly with boundary),
and O,P be two interior points of M . For X = M −O, we have

H i(Confn(X − P ),Z) ∼=
∞⊕
t=0

H i−t(Confn−t(X),Z)

Theorem (Kallel ’08, X a punctured manifold)

Let M be an oriented closed connected manifold of even dimension, and
P, P1, P2, . . . , Pr (r ≥ 1) be points of M . For X = M − {P1, . . . , Pr},

H i(Confn(X − P ),F) ∼=
∞⊕
t=0

H i−(d−1)t(Confn−t(X),F)

for any field F.
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A splitting phenomenon

In this talk, we say that a manifold X of dimension d satisfies the splitting
phenomenon (in Q coefficients) if

H i(Confn(X − P ),Q) ∼=
∞⊕
t=0

H i−(d−1)t(Confn−t(X),Q)

If X is a closed manifold, it is known that the splitting phenoemenon for
X does not hold. In fact, a (completely different) relation holds in Z/2Z
coefficients.

Question

What other connected nonclosed manifold satisfies the splitting
phenomenon? Does the splitting phenomenon hold in a sense stronger
than the Betti numbers (dimensions of rational cohomology)?

From now on, we focus on the nice case where X is a smooth complex
variety.
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Main result

Theorem (H., to be continued)
Let X be a (connected) noncompact smooth (complex) variety of complex
dimension d in one of the three cases:

1 an r-punctured smooth projective variety, with r ≥ 1;

2 an r-punctured affine plane Cd, with r ≥ 0;

3 (P2 − C)− {r ≥ 0 points}, where C is a smooth plane curve.

Then there are explicit isomorphisms that remember additional structures:

H i(Confn(X − P ),Q)
∼=−→
∞⊕
t=0

H i−(2d−1)t(Confn−t(X),Q), (1)

H i(F (X − P, n),Q)
∼=−→
∞⊕
t=0

IndSn
Sn−t

H i−(2d−1)t(F (X,n− t),Q), (2)

where Ind means the induction of a group representation.
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Main result

Remarks.
1 If X is in the first two cases above, then (1) is the Q-coefficient

version of known results. But we will see that the new proof keeps
track of “mixed Hodge numbers”, an invariant finer than Betti
numbers. Moreover, the isomorphisms constructed here interact with
the cup product well.

2 The actual condition for X here is a technical condition in terms of
mixed Hodge theory, which is satisfied by all three cases above as well
as many other examples.

3 The strongest statement one can hope for is

Conjecture. For any noncompact smooth d-dimensional variety X, we have

H i(F (X − P, n),Z) ∼=
∞⊕
t=0

IndSn
Sn−t

H i−(2d−1)t(F (X,n− t),Z)(−dt)

as mixed Hodge structures, where (−dt) denotes a “Tate twist” that only
affects the mixed Hodge structure.
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Technical overview

1 The main tool is a Leray-type spectral sequence, with an important
page that can be explicitly described as a differential graded algebra
(dga) similar to the work of Cohen, Taylor, Kriz and Totaro.

2 The key is an isomorphism involving the dga above, constructed
explicitly and “artificially”. This is the main novelty and the
unexpected part of my method.

3 The mixed Hodge theory ensures degeneracy of the spectral sequence.
This is the reason why we work on complex varieties and impose
conditions on X.
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Mixed Hodge structures

A pure Hodge structure of weight m is an abelian group H with a
decomposition of C-vector spaces H ⊗ C =

⊕
p+q=mHp,q such that Hp,q

and Hq,p are complex conjugates. The classical example of a pure Hodge
structure of weight m is Hm(X,Z) for a smooth projective variety X.

Deligne generalized the Hodge theory to any complex variety X, except
that now Hm(X,Z) “does not only have weight-m part”. A mixed Hodge
structure is an abelian group H equipped with

1 an increasing weight filtration 0 = · · · ⊆Wm−1 ⊆Wm ⊆ · · · = HQ;
2 a decreasing Hodge filtration HC = · · · ⊇ Fp−1 ⊇ Fp ⊇ · · · = 0,

such that the weight-m piece GrWm HQ := Wm/Wm−1 is a pure HS of
weight m determined by the Hodge filtration in a certain way.

One may view a MHS as a weight filtration on HQ together with the pure
HS GrWm HC =

⊕
p+q=mHp,q for each weight-graded piece, but with some

additional data encoded in the Hodge filtration.
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Mixed Hodge structures

Deligne constructed a mixed Hodge structure on Hm(X,Z) for any
complex variety X with W−1 = 0 and W2m = Hm(X,Q), so there are
only pieces of weight in [0, 2m].
Roughly speaking, the weight-m piece corresponds to a “smooth compact
model” of X, pieces of weight > m account for the noncompactness of X
(e.g., its complement, if X is open in some compact X), and pieces of
weight < m account for the singularity of X (e.g., the exceptional divisor
from blowup).
Takeaway: if X is smooth, then Hm(X,Q) only has pieces of weight in
[m, 2m]. If X is compact, then the weights are concentrated in [0,m].

Mixed Hodge structures form an abelian category, so we can talk about
morphisms, extensions and spectral sequences. For example, a rational
MHS HQ is an iterated extension of its weight graded pieces GrWm HQ, but
the HS of them do not determine the MHS HQ.
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Main result in MHS

We can now finish stating the main result after setting up some language
to compare mixed Hodge structures.

Tate twist. Given a MHS H and n ∈ Z, the Tate twist H(−n) is a MHS
with underlying group H but with the filtrations shifted so that
H(−n)p,q = Hp−n,q−n.

Equivalence. Given two rational MHS H and H ′, there are several notions
weaker than isomorphism, listed in ascending order of strength:

1 having the same mixed Hodge numbers, i.e., dimCHp,q = dimCH ′p,q.
2 equivalence up to extension problem, so [H] = [H ′] ∈ K0(MHS).
3 having isomorphic weight-graded pieces, i.e., GrWm (H) ∼= GrWm (H ′) as

pure HS.

It is enough to care about (1) for most purposes, but in the three cases in
the main result, we are able to get (3). Write H ∼ H ′ if they are
equivalent in the sense (3).
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Main result in MHS

Theorem (H., continued)

Let X be as before. Then as mixed Hodge structures, we have

H i(Confn(X − P ),Q) ∼
∞⊕
t=0

H i−(2d−1)t(Confn−t(X),Q)(−dt), (3)

H i(F (X − P, n),Q) ∼
∞⊕
t=0

IndSn
Sn−t

H i−(2d−1)t(F (X,n− t),Q)(−dt).

(4)

Remark
Note that (4) is an upgrade of (3). Equation (4) implies (3) by taking Sn

invariants on both sides. The right hand side needs the fact:
(IndSn

Sn−t
V )Sn ∼= V Sn−t for any Sn−t representation V .
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Applications

Given the main result, we are able to compute the mixed Hodge numbers
of configuration spaces of a punctured variety, as long as we know those of
a one-punctured variety, which I expect to have a nicer answer. My recent
joint work computes those of a one-punctured elliptic curve, which leads to
the case of multi-punctured elliptic curves using the splitting result.
Theorem (Cheong, H.)∑

p,q,i,n≥0

(−1)ihn−p,n−q;i(Confn(E − P ))xpyqu2n−w(i)tn

=
(1− xut)(1− yut)(1− xyu2t2)

(1− xyu2t)(1− xut2)(1− yut2)
,

where

w(i) =

{
3i/2, i is even;

(3i− 1)/2, i is odd.
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A spectral sequence

Observe that F (X,n) = Xn −
⋃

1≤i 6=j≤n ∆ij , where ∆ij = {xi = xj} is a
big diagonal. The cohomology of a space minus a union of closed
subspaces can often be computed via a spectral sequence. A prototype
appears in Deligne’s work, and versions of this spectral sequence appear in
various forms, generalities and strengths.

Most of its variants (e.g. Totaro, Petersen) can be recognized by the
following features.

1 Goresky–MacPherson’s computation of H∗(Rd −
⋃

iAi,Z), the
complement of affine subspaces, in terms of the combinatorial data of
their intersection. In specific, a stratum is the intersection of several
subspaces, and what matters is the partially ordered set of all strata
ordered by inclusion.

2 A spectral sequence converging to the desired cohomology, with a
page described in terms of the cohomology of each stratum and the
poset of strata.
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A spectral sequence

For the arrangements of closed subspaces we will use today, the poset of
strata is of a special kind called “geometric lattice”. The contribution of
such a poset in the spectral sequence has a simpler description given by
the “Orlik–Solomon algebra”, as will be made clear below.

Theorem (Totaro ’96)

Let M be an orientable manifold of dimension 2d. Then there is a spectral
sequence Ep,q

2d =⇒ Hp+q(F (M,n),Z) such that E2d :=
⊕

p,q E
p,q
2d is a

dga over H∗(Mn,Z) generated by generators gij of bidegree (0, 2d− 1)
(one for each big diagonal ∆ij) subject to relations

1 gijgjk + gjkgki + gkigij = 0

2 gijA = 0 if A ∈ H∗(Mn,Z) and A|∆ij = 0.

The page-2d differential is given by d2dgij = [∆ij ] ∈ H2d(Mn,Z).

The relation (1) is a relation in the OS algebra coming from the
dependence among big diagonals: ∆ij ⊇ ∆jk ∩∆ki.
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A spectral sequence

If we instead apply a more recent spectral sequence (Tosteson, or dual of
Petersen) to the same arrangement, we get the same SS but in different
page and tilted: we get Ep,q

1 =⇒ Hp−q(F (M,n),Z); the dga E1 is
generated in the same way, except that gij is of bidegree (2d, 1).

6 · · · · ·

3 • · · · ·

0 · · · · ·

0 1 2 3 4

Totaro: E2d with d2d

2 ·

1 • · · · ·

0 · · · · · · · · · ·

0 · · · 3 4 · · · 8

Tosteson: E1 with d1

Comparing spectral sequences for d = 2. Dots are the bigraded pieces that can be
nonzero. Bullets are where gij lives. Arrows are differentials. Red arrows
correspond. Terms on the blue lines contribute to H3(F (M,n),Z).

For convenience, we will use the E1 spectral sequence.
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A spectral sequence

Now let X be a smooth complex variety of dimension d, and P 1, . . . , P r

(r ≥ 0) be points of X. Write Xr = X − {P 1, . . . , P r}, then
F (Xr, n) = Xn −

⋃
∆ij −

⋃
∆s

i , where ∆s
i = {xi = P s}. The same

recipe can be applied to this arrangement as well, because its poset of
strata is also a “geometric lattice”.
Lemma. There is a spectral sequence Ep,q

1 =⇒ Hp−q(F (Xr, n),Z) such
that E1 is a dga over H∗(Xn,Z) generated by gij and gsi of bidegree
(2d, 1) (corresponding to ∆ij and ∆s

i ) subject to

1 gijgjk + gjkgki + gkigij = gijg
s
j + gsjg

s
i + gsi gij = 0

2 gijA = 0 if A|∆ij = 0 and gsiA = 0 if A|∆s
i

= 0.

3 gsi g
t
i = 0 if s 6= t.

The differential is given by d1gij = [∆ij ] and d1g
s
i = [∆s

i ].

The second part of (1) is the dependence ∆s
i ⊇ ∆s

j ∩∆ij . Relation (3) is
due to ∆s

i ∩∆t
i = ∅, another rule in OS algebra.
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A spectral sequence

Lemma. There is a spectral sequence Ep,q
1 =⇒ Hp−q(F (Xr, n),Z) such

that E1 is a dga over H∗(Xn,Z) generated by gij and gsi of bidegree
(2d, 1) (corresponding to ∆ij and ∆s

i ) subject to certain relations. The
differential is given by d1gij = [∆ij ] and d1g

s
i = [∆s

i ].

This lemma is not written in the literature. I explain some claims further:

1 There could be more relations coming from OS algebra, but a careful
elementary argument shows that the relations here suffice.

2 A direct application of Tosteson shows that Ep,q
1 is as claimed, as an

abelian group.

3 The dga structure comes from identification with the E2d page of the
Totaro’s Leray SS.

4 This is a spectral sequence of MHS, if we assign Hodge type (d, d) to
the generators gij and gsi (technically a Tate twist by (−qd) on Ep,q

1 ).
This is because the SS of Petersen respects MHS.
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Key isomorphism

Write [n] = {1, . . . , n} and [n]− i = {1, . . . , n}r {i}. Use the notation
F (Xr, I) for any finite index set I, which means the coordinates are
labeled by elements of I. Denote by E1(Xr, I) the dga E1 for F (Xr, I).

Lemma (H.)

We have an isomorphism of bigraded Q-vector spaces

Φ : E1(Xr−1, n)Q ⊕
n⊕

i=1

E1(Xr, [n]− i)Q → E1(Xr, n)Q

such that Φ|E1(Xr−1,n)Q is the natural map, and Φ|E1(Xr,[n]−i)Q is the
E1(Xr−1, [n]− i)Q-module map that sends 1 to gri and sends grj to gijg

r
i

for all j ∈ [n]− i.

Moreover, the lemma holds in Z coefficients if Künneth’s formula works:
H∗(Xn,Z) ∼= H∗(X,Z)⊗n (true if H∗(X,Z) is torsion free).
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Key isomorphism

We remark that the isomorphism is constructed artificially by working on
the generators and relations. It is not known whether it can be
constructed from functorial or topological maps.

The isomorphism on E1 can be used to compare H∗(Xr) and H∗(Xr−1),
eventually leading to the splitting phenomenon for Xr−1. But to go from
E1 to H∗, one needs to

1 take the cohomology (kernel mod image) of the differential maps to
compute the next page;

2 wait for Ep,q
h to stabilize, getting Ep,q

∞ = Ep,q
h , h� 0.

3 Then H i is an iterated extension of Ep,q
∞ , p− q = i.

The difficulty is that the differential maps on E2 or later pages are beyond
control.
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Why noncompact?

We claim that Φ commutes with the first-page differential d1 when X is
not compact.

If X is noncompact, the top cohomology H2d(X,Z) vanishes. Recall that
the artificial part of Φ sends 1 to gri and grj to gijg

r
i . By the graded Leibniz

rule, it suffices to show that the differentials of all these elements vanish.

Using the rule of d1, one can show d1g
r
i is the pullback of a class in

H2d(X), which must vanish. On the other hand, d1(gijg
r
i ) = (d1gij)g

r
i by

Leibniz, and we can again show that (d1gij)|∆r
i

is a pullback from H2d(X)
and vanishes. But a relation describing E1 says griA = 0 for A|∆r

i
= 0.

Upshot. The isomorphism Φ descends to the E2 page.
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Degeneracy

We hope the isomorphism Φ descends to the E∞ page. The problem is
solved if E2 = E∞, i.e., if all differential maps on E2 or later pages vanish.
We say the spectral sequence degenerates at the E2 page.

Lemma

Assume that there is a rational number 1 ≤ w ≤ 2 such that H i(X,Q) is
pure of weight wi for all i. (If wi is not an integer, this forces
H i(X,Q) = 0.) Then for any r, n ≥ 0, the spectral sequence
Ep,q

1 (Xr, n)Q =⇒ Hp−q(F (Xr, n),Q) degenerates at the E2 page.

Proof.

If w = 1, then the piece Ep,q
1 is pure of weight p. The same holds for later

pages because they are subquotients of E1. So every differential (except
d1) connects pieces of different weights, so it must vanish because the SS
is in the category of MHS. It is a classical argument of Deligne and Totaro.
If w > 1, we keep track of the weights of pieces and argue the same.
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Degeneracy

Lemma

Assume that there is a rational number 1 ≤ w ≤ 2 such that H i(X,Q) is
pure of weight wi for all i. (If wi is not an integer, this forces
H i(X,Q) = 0.) Then for any r, n ≥ 0, the spectral sequence
Ep,q

1 (Xr, n)Q =⇒ Hp−q(F (Xr, n),Q) degenerates at the E2 page.

The assumption holds for the following examples of X.

1 X is a one-punctured smooth projective variety. In this case w = 1.
The reason is that puncturing once only kills the top cohomology of a
smooth projective variety and changes nothing else.

2 X = Cd. In this case w is arbitrary because H i(X,Z) = 0 for i > 0.

3 X = P2 − C, where C is smooth plane curve of genus g. Then
w = 3/2. In fact, the only nonzero rational cohomologies are
H0(X,Q) = Q and H2(X,Q) = Q2g (pure of weight 3).
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Completion of the proof

For X in the cases above, we get an isomorphism of rational MHS

Φp,q
∞ : Ep,q

∞ (Xr−1, n)Q ⊕
n⊕

i=1

Ep−2d,q−1
∞ (Xr, [n]− i)Q(−d)→ Ep,q

∞ (Xr, n)Q,

where the shift and twist accounts for the fact that gij and gsi have
bidegree (2d, 1) and Hodge type (d, d). (Recall Φ : 1 7→ gri , g

r
j 7→ gijg

r
i .)

Fix k. Take an iterated extension of the equation for all p, q with
p− q = k, we get an equivalence of MHS up to extension problem

Hk(F (Xr−1, n),Q)⊕
n⊕

i=1

Hk−(2d−1)(F (Xr, [n]− i),Q)(−d)

∼ Hk(F (Xr, n),Q)

We remark that the iterated extension involves pieces of distinct weights,
so we get the stronger sense of “∼” equivalence discussed before.
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Completion of the proof

We wrap up the proof with a representation-theoretic observation.

Write V (I) = H∗(F (Xr, I),Q) for an index set I, noting that it has an
action by the permutation group of I. Then as Sn representations,

n⊕
i=1

V ([n]− i) ∼= IndSn
Sn−1

V ([n− 1])

This gives (omitting coefficients Q in the notation)

Hk(F (Xr, n)) ∼ Hk(F (Xr−1, n))⊕IndSn
Sn−1

Hk−(2d−1)(F (Xr, n−1))(−d).

The second part of the splitting theorem for Xr−1 (recapped below)
follows from induction. QED.

Hk(F (Xr, n)) ∼
∞⊕
t=0

IndSn
Sn−t

Hk−(2d−1)t(F (Xr−1, n− t))(−dt)
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Summary of what’s new

Main takeaway. We investigated the “splitting phenomenon” relating the
cohomology of Confn(X − P ) and Confm(X) for noncompact X.

1 If X is a punctured smooth projective variety or affine space, we
upgrade known results to MH numbers.

2 For X as above, the isomorphism is explicit and interacts well with
cup product, thanks to an observation by Deligne:
H∗(F (Xr, n),Q) ∼= E2(X,n)Q as rings (not necessarily as MHS).

3 Even for Betti numbers, the case of P2 − C may be new.

4 We proved a splitting result for ordered configuration spaces.

5 This machinery also works in the category of Galois representations of
`-adic cohomology. We get a splitting theorem in that sense, where
the isomorphism is up to semisimplification.

We note that (2)(3)(4) are of topological interest even if we don’t care
about MHS, algebraic geometry or arithmetics.
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Further work

Conjecture. For any noncompact smooth d-dimensional variety X, we have

H i(F (X − P, n),Q) ∼=
∞⊕
t=0

IndSn
Sn−t

H i−(2d−1)t(F (X,n− t),Q)(−dt)

To extend the main result to more examples of noncompact X, there are
two independent directions:

1 Try to control the pages after E2, either by looking for degeneracy
without the weight argument, or by extending Φ to a “morphism of
SS”. The latter is usually achieved by the functoriality of the SS in
question, but as a warning, any construction must make use of
noncompactness of X.

2 Study the spectral sequence for F (X −
⋃
Zi, n) where X is a

one-punctured smooth projective variety and Zi’s are closed
subvarieties of X (not necessarily points). Then we have degeneracy,
but the poset of strata is more complicated.
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Remarks about integer coefficients

One can attempt cases of the conjecture above in Z coefficients, because
in some cases, the splitting is known in Z coefficients (e.g., Napolitano).

My method has several places that require rational coefficients, and one
may need to deal with these problems when working with integer
coefficients.

1 Künneth’s formula may not hold in Z coefficients.

2 The weight filtration is defined on HQ for a MHS H, so the
degeneracy we can achieve so far is in Q coefficients.

3 The integral cohomology groups are not determined by the E∞ page
of the SS because of the extension problem.

4 The formula H∗(Confn(X)) = H∗(F (X,n))Sn only holds in rational
coefficients.
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Advertisement

I will talk about a heavily AG motivated combinatorics question at 4-5pm,
Tuesday Nov. 24 in UBC Discrete Mathematics Seminar. It is partially
motivated by the work of Kai Behrend and Jim Bryan.
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Thank you!

For more details, please refer to

1 Y. Huang, Cohomology of configuration spaces on punctured
varieties, preprint upon request.


