Counting 0-dimensional sheaves on singular curves

Yifeng Huang (UBC)

joint with Ruofan Jiang

Counting invariants

- $\bullet~$ Zeta function \rightsquigarrow point-counting invariant
- $\bullet\,$ Gromov–Witten invariant $\rightsquigarrow\,$ curve-counting invariant

What is counting?

Count = an enumerative invariant of the corresponding moduli space The enumerative invariant could be:

- A fundamental class
- The integral of such
- Betti numbers, Hodge numbers
- Euler characteristic
- Point-count over finite fields

Motives

Let k be a field.

Definition

(Informal) The motive of a k-variety is itself "up to cut-and-paste". (Formal) The motive of X is the class [X] in the Grothendieck ring of varieties $K_0(\operatorname{Var}_k)$ defined as the abelian group generated by k-varieties with the cut-and-paste relation $[X] = [Z] + [X \setminus Z]$.

The motive recovers the point-count over finite fields and the Euler characteristic, but not the Betti numbers. The motive remembers the cell-counts in a cell decomposition when there is one. Example: X has a 0-cell, two 1-cells and a 2-cell $\rightsquigarrow [X] = 1 + 2\mathbb{L} + \mathbb{L}^2$.

0-dimensional sheaves

Definition

A 0-dimensional sheaf on a variety X is a coherent sheaf on X supported on finitely many points. The length of a 0-dimensional sheaf M is defined as $\dim_k H^0(X; M)$ (the same as the degree, or Euler characteristic).

Intuition

A 0-dimensional sheaf of length n on X can be thought of as an "n-point configuration" on X, together with some extra information remembered at points of collision.

Examples of 0-dimensional sheaves

$X=\mathbb{A}^1$

A 0-dimensional sheaf on X can be encoded by a module over k[t] that is finite-dimensional as a k-vector space.

 $M_1 = \frac{k[t]}{(t^2)} \oplus \frac{k[t]}{(t-1)} \text{ is a 0-dimensional sheaf of length 3.}$ $M_2 = \frac{k[t]}{(t)} \oplus \frac{k[t]}{(t)} \oplus \frac{k[t]}{(t-1)} \text{ is a different 0-dimensional sheaf of length 3.}$

Moduli spaces of 0-dimensional sheaves

- The Hilbert scheme of points $\operatorname{Hilb}_n(X) = \{\mathcal{O}_X \twoheadrightarrow M : \ell(M) = n\}$
- The (\mathcal{E} -framed) Quot scheme of points $\operatorname{Quot}_{\mathcal{E},n}(X) = \{\mathcal{E} \twoheadrightarrow M : \ell(M) = n\}$ for any given coherent sheaf \mathcal{E}
- The stack of 0-dimensional sheaves $\operatorname{Coh}_n(X) = \{M : \ell(M) = n\}$

Counting functions

- Hilbert zeta function $Z_X^{\text{Hilb}}(t) = \sum_{n \ge 0} [\text{Hilb}_n(X)] t^n$
- Quot zeta function $Z_{\mathcal{E}}(t) = \sum_{n \geq 0} [\operatorname{Quot}_{\mathcal{E},n}(X)] t^n$

•
$$\widehat{Z}_X(t) = \sum_{n \ge 0} [\operatorname{Coh}_n(X)] t^n.$$

Hilbert zeta function

Facts

- X smooth curve: $\operatorname{Hilb}_n(X) = \operatorname{Sym}^n(X) \implies Z_X^{\operatorname{Hilb}}(t)$ is the motivic zeta function.
- X smooth surface: Hilb_n(X) is smooth and resolves the singularity of Symⁿ(X). But what is $Z_X^{\text{Hilb}}(t)$?
- (Ellingsrud–Strømme '87) Found a cell decomposition for $Hilb_n(\mathbb{P}^2)$.
- (Göttsche '01) Computed $Z_X^{\text{Hilb}}(t)$ in terms of the motivic zeta function for X smooth surface.

Consequences

- X smooth curve: $Z_X^{\text{Hilb}}(t)$ is rational in t (Kapranov '00)
- X smooth surface: $Z_X^{\text{Hilb}}(t)$ is rational in t whenever the motivic zeta function for X is.

Rationality

Question

Do we have rationality of $Z_X^{\text{Hilb}}(t)$ for other X?

Theorem (Bejleri-Ranganathan-Vakil, '20)

If X is a reduced curve, then $Z_X^{\rm Hilb}(t)$ is rational in t with a known denominator.

Remark

The Hilbert scheme is sensitive to the singularities, so $Z_X^{\text{Hilb}}(t)$ is different from the motivic zeta function.

Knot theory?

Remarkable fact

The exact formula of the numerator is also quite interesting – it says a lot about the singularities!

For planar singularities

- The numerator seems to always be a polynomial in \mathbb{L}, t .
- The numerator satisfies a functional equation. (PT '07, ...)
- The numerators give interesting combinatorial polynomials, such as generalized *q*, *t*-Catalan. (Gorsky–Mazin, '13)
- (Oblomkov-Rasmussen-Shende conjecture, '18) The numerator should read some knot-theoretic invariants about the singularities. More precisely, the triply-graded link homology of the algebraic link associated to the singularity.

How about other counting functions?

Recall

$$\begin{aligned} \operatorname{Hilb}_{n}(X) &= \{\mathcal{O}_{X} \twoheadrightarrow M : \ell(M) = n\} \rightsquigarrow Z_{X}^{\operatorname{Hilb}}(t) \\ \operatorname{Quot}_{\mathcal{E},n}(X) &= \{\mathcal{E} \twoheadrightarrow M : \ell(M) = n\} \rightsquigarrow Z_{\mathcal{E}}(t) \\ \operatorname{So} Z_{X}^{\operatorname{Hilb}}(t) &= Z_{\mathcal{O}_{X}}(t). \end{aligned}$$

Questions

- Is the Quot zeta function $Z_{\mathcal{E}}(t)$ as nice as the Hilbert zeta function?
- By varying \mathcal{E} , how much does $Z_{\mathcal{E}}(t)$ enrich $Z_X^{\text{Hilb}}(t)$?

Short answers

• 99% yes;

• A lot!

Main results about $Z_{\mathcal{E}}(t)$

Settings

X reduced curve over $k = \overline{k}$; \mathcal{E} a rank-d torsion-free bundle over X. Typical example: $\mathcal{E} = \mathcal{O}_X^d, d \ge 0$.

Theorem (H.-Jiang)

 $Z_{\mathcal{E}}(t)$ is rational in t "with known denominator". More precisely, $Z_{\mathcal{E}}(t)/Z_{\mathcal{O}^d_{\widetilde{X}}}(t)$ is a polynomial, where \widetilde{X} is the normalization of X.

Remark

For smooth curve \widetilde{X} , $Z_{\mathcal{O}^d_{\widetilde{X}}}(t)$ is rational. (Bifet '89, BFP '20)

Theorem (H.-Jiang)

If X has only planar singularities, and $\mathcal{E} = \mathcal{O}_X^d$, then $Z_{\mathcal{E}}(t)$ satisfies a functional equation when specialized to point-counts over finite fields.

11 / 22

Relation to combinatorics

Theorem (H.-Jiang)

Let X be the curve $\{y^2 = x^n\}$ (when n = 2m is even and char k = 2, replace by $y(y - x^m) = 0$), and $\mathcal{E} = \mathcal{O}_X^d$. Then there are explicit polynomials in \mathbb{L} and t that compute $Z_{\mathcal{O}_X^d}(t)$. The formulas

• depend on whether n is odd or even;

• involve partitions, Hall polynomials and q-hypergeometric series.

Consequences

The functional equation implies a nontrivial identity about Hall polynomials. A direct proof can be given if n = 2 or n is odd. A direct proof is so far unknown if $n \ge 4$ is even.

Open question

Do these complicated polynomials recover extra info about the associated links?

Stack of 0-dimensional sheaves

- $\operatorname{Coh}_n(X)$ parametrizes 0-dimensional sheaves of length n up to isomorphism.
- It is a stack.
- Its motive is still defined. (Behrend-Dhillon '07)

Question

How to make sense of the motive of $Coh_n(X)$, or a stack in general?

Orbit-stabilizer theorem

Example from counting

- Let a finite group G act on a finite set X.
- The orbit space X/G can be viewed as a "quotient stack" [X/G] by counting each element with a fractional weight: 1/|Stabilizer|.
- By the orbit-stabilizer theorem, the weighted cardinality of [X/G] is precisely |X|/|G|. (Not necessarily an integer)

Motive of a quotient stack

- Let the algebraic group GL_n act on a variety X.
- One can form the quotient stack $[X/\operatorname{GL}_n]$.
- The motive of $[X/\operatorname{GL}_n]$ is defined formally as $[X]/[\operatorname{GL}_n]$.
- $[[X/\operatorname{GL}_n]]$ lives in the localization $K_0(\operatorname{Var}_k)[\mathbb{L}^{-1}, (\mathbb{L}^b 1)^{-1} : b \ge 1]$ because $[\operatorname{GL}_n] = \mathbb{L}^{\binom{n}{2}}(\mathbb{L} - 1) \dots (\mathbb{L}^n - 1).$

So, is $Coh_n(X)$ a quotient stack?

Yes — using the variety of "matrix points".

Matrix points

For $n \geq 0$ and a variety X/k, we can define a variety $C_n(X)$ of $n \times n$ -matrix points on X. As a moduli space, $C_n(X)$ parametrizes length-n sheaves together with an ordered basis on the global sections: $C_n(X)(k) = \{(M, \iota) : \ell(M) = n, \iota \in \text{Isom}_{\text{Vect}_k}(k^n, H^0(X; M))\}.$ Concretely, if X is an affine variety cut out by $f_1(T_1, \ldots, T_m) = \cdots = f_r(T_1, \ldots, T_m) = 0$, then $C_n(X)(k)$ is the set of pairwise commuting matrices $A_1, \ldots, A_m \in \text{Mat}_n(k)$ satisfying $f_j(A_1, \ldots, A_m) = 0$ for all j. (We say (A_1, \ldots, A_m) is a matrix point on X.)

Key fact

 $\operatorname{Coh}_n(X) = [C_n(X)/\operatorname{GL}_n], \text{ so } [\operatorname{Coh}_n(X)] = [C_n(X)]/[\operatorname{GL}_n].$

The generating function

Recall $\widehat{Z}_X(t) = \sum_n [\operatorname{Coh}_n(X)] t^n = \sum_n [C_n(X)]/[\operatorname{GL}_n] t^n$. View it in $K_0(\operatorname{Var}_k)[\mathbb{L}^{-1}, (\mathbb{L}^b - 1)^{-1}] \subseteq K_0(\operatorname{Var}_k)[[\mathbb{L}^{-1}]].$

Facts

- (Euler's identity) $\widehat{Z}_{\mathbb{A}^1}(t) = 1/[(1-t)(1-\mathbb{L}^{-1}t)(1-\mathbb{L}^{-2}t)\dots].$
- (Feit–Fine '60) $\widehat{Z}_{\mathbb{A}^2}(t)$ is also of the form 1/(infinite product).
- When X = A², C_n(X) is the commuting variety, as well as an example of unframed quiver variety. Feit–Fine formula played a role in the Donaldson–Thomas theory of 3-folds. (Behrend–Bryan–Szendrői, '13)
- The formulas played a role in providing matrix-point models for Sato-Tate type distributions in arithmetic geometry. (H.-Ono-Saad, BBVX)

Singular curves?

Question

If X is a reduced singular curve, then what does $\widehat{Z}_X(t)$ look like?

Theorem (H.)

If $X = \{xy = 0\}$ (same as $y^2 = x^2$ when char $k \neq 2$), then $\widehat{Z}_X(t)$ has an explicit formula of the form (interesting inf sum)/(easy inf product). The infinite sum involves partitions and basic hypergeometric functions.

Conjecture

In general, $\widehat{Z}_X(t)$ should be of the form (some numerator) / (well-understood denominator). More precisely, a series can be called a "numerator" if its specialization to finite-field point-count gives an entire function in t.

New results

Theorem (H.-Jiang)

"Locally speaking", for any variety X (not necessarily a curve), $\widehat{Z}_X(t)$ can be explicitly computed by a formula in terms of the Quot zeta function $Z_{\mathcal{O}_X^d}(t)$ for all $d \ge 0$.

As a consequence of this and our formulas for $Z_{\mathcal{O}^d_{\mathbf{v}}}(t),$ we get

Theorem (H.-Jiang)

Let X be the curve $\{y^2 = x^n\}$ (when n = 2m is even and char k = 2, replace by $y(y - x^m) = 0$), then the "numerator" for $\widehat{Z}_X(t)$ is an explicit power series in \mathbb{L}^{-1} and t involving partitions, Hall polynomials and q-hypergeometric series.

Modular forms and Ramanujan?

Some cases of $\{y^2 = x^n\}$ are actually simpler, e.g., when n = 3, the numerator (called H(t;q)) is $\sum_{n\geq 0} q^{n^2}/((1-q)\dots(1-q^n))t^{2n}$, where $q = \mathbb{L}^{-1}$.

Special values at $t = \pm 1$

When $t = \pm 1$ and n = 3, this series is the Fourier expansion of a modular form by Rogers-Ramanujan identity. Similar for $n \ge 5$ odd, except we need Gordon-Rogers-Ramanujan identity. For n = 2m even, the \mathbb{L}^{-1} , t-series is far from understood (except n = 2), but it appears that H(1;q) = 1 and H(-1;q) is an explicit Dedekind η -quotient that gives a modular form.

Far-reaching open question

Why should modular forms even appear? What does the modular form say about the singularity? For example, when X has planar singularities, what does the modular form say about the associated links?

Summary

In this talk, I have talked about

- Two moduli spaces of 0-dimensional sheaves: Quot scheme and the stack of 0-dimensional sheaves;
- Two counting functions they produce: $Z_{\mathcal{E}}(t)$ and $\widehat{Z}_X(t)$;
- A result that relate them explicitly;
- Some general theorems and exact formulas about them, when X is a singular curve.
- Open questions suggested by the exact formulas in relation to combinatorics, modular forms, knot theory...

Thank you for listening!