Counting 0-dimensional sheaves on singular curves

Yifeng Huang (UBC)

joint with Ruofan Jiang

Counting invariants

- Zeta function \sim point-counting invariant
- Gromov-Witten invariant \leadsto curve-counting invariant

What is counting?
Count $=$ an enumerative invariant of the corresponding moduli space The enumerative invariant could be:

- A fundamental class
- The integral of such
- Betti numbers, Hodge numbers
- Euler characteristic
- Point-count over finite fields

Motives

Let k be a field.

Definition

(Informal) The motive of a k-variety is itself "up to cut-and-paste". (Formal) The motive of X is the class [X] in the Grothendieck ring of varieties $K_{0}\left(\operatorname{Var}_{k}\right)$ defined as the abelian group generated by k-varieties with the cut-and-paste relation $[X]=[Z]+[X \backslash Z]$.

The motive recovers the point-count over finite fields and the Euler characteristic, but not the Betti numbers. The motive remembers the cell-counts in a cell decomposition when there is one. Example: X has a 0 -cell, two 1 -cells and a 2 -cell $\leadsto[X]=1+2 \mathbb{L}+\mathbb{L}^{2}$.

0-dimensional sheaves

Definition

A 0-dimensional sheaf on a variety X is a coherent sheaf on X supported on finitely many points. The length of a 0 -dimensional sheaf M is defined as $\operatorname{dim}_{k} H^{0}(X ; M)$ (the same as the degree, or Euler characteristic).

Intuition

A 0 -dimensional sheaf of length n on X can be thought of as an " n-point configuration" on X, together with some extra information remembered at points of collision.

Examples of 0-dimensional sheaves

$X=\mathbb{A}^{1}$
A 0 -dimensional sheaf on X can be encoded by a module over $k[t]$ that is finite-dimensional as a k-vector space.
$M_{1}=\frac{k[t]}{\left(t^{2}\right)} \oplus \frac{k[t]}{(t-1)}$ is a 0-dimensional sheaf of length 3 .
$M_{2}=\frac{k[t]}{(t)} \oplus \frac{k[t]}{(t)} \oplus \frac{k[t]}{(t-1)}$ is a different 0-dimensional sheaf of length 3 .

Moduli spaces of 0-dimensional sheaves

- The Hilbert scheme of points $\operatorname{Hilb}_{n}(X)=\left\{\mathcal{O}_{X} \rightarrow M: \ell(M)=n\right\}$
- The $(\mathcal{E}$-framed) Quot scheme of points Quot $_{\mathcal{E}, n}(X)=\{\mathcal{E} \rightarrow M: \ell(M)=n\}$ for any given coherent sheaf \mathcal{E}
- The stack of 0 -dimensional sheaves $\operatorname{Coh}_{n}(X)=\{M: \ell(M)=n\}$

Counting functions

- Hilbert zeta function $Z_{X}^{\mathrm{Hilb}}(t)=\sum_{n \geq 0}\left[\operatorname{Hilb}_{n}(X)\right] t^{n}$
- Quot zeta function $Z_{\mathcal{E}}(t)=\sum_{n \geq 0}\left[\right.$ Quot $\left._{\mathcal{E}, n}(X)\right] t^{n}$
- $\widehat{Z}_{X}(t)=\sum_{n \geq 0}\left[\operatorname{Coh}_{n}(X)\right] t^{n}$.

Hilbert zeta function

Facts

- X smooth curve: $\operatorname{Hilb}_{n}(X)=\operatorname{Sym}^{n}(X) \Longrightarrow Z_{X}^{\text {Hilb }}(t)$ is the motivic zeta function.
- X smooth surface: $\operatorname{Hilb}_{n}(X)$ is smooth and resolves the singularity of $\operatorname{Sym}^{n}(X)$. But what is $Z_{X}^{\text {Hilb }}(t)$?
- (Ellingsrud-Strømme '87) Found a cell decomposition for $\operatorname{Hilb}_{n}\left(\mathbb{P}^{2}\right)$.
- (Göttsche '01) Computed $Z_{X}^{\text {Hilb }}(t)$ in terms of the motivic zeta function for X smooth surface.

Consequences

- X smooth curve: $Z_{X}^{\text {Hilb }}(t)$ is rational in t (Kapranov '00)
- X smooth surface: $Z_{X}^{\text {Hilb }}(t)$ is rational in t whenever the motivic zeta function for X is.

Rationality

Question

Do we have rationality of $Z_{X}^{\text {Hilb }}(t)$ for other X ?

Theorem (Bejleri-Ranganathan-Vakil, '20)
If X is a reduced curve, then $Z_{X}^{\mathrm{Hilb}}(t)$ is rational in t with a known denominator.

Remark

The Hilbert scheme is sensitive to the singularities, so $Z_{X}^{\mathrm{Hilb}}(t)$ is different from the motivic zeta function.

Knot theory?

Remarkable fact

The exact formula of the numerator is also quite interesting - it says a lot about the singularities!

For planar singularities

- The numerator seems to always be a polynomial in \mathbb{L}, t.
- The numerator satisfies a functional equation. (PT '07, ...)
- The numerators give interesting combinatorial polynomials, such as generalized q, t-Catalan. (Gorsky-Mazin, '13)
- (Oblomkov-Rasmussen-Shende conjecture, '18) The numerator should read some knot-theoretic invariants about the singularities. More precisely, the triply-graded link homology of the algebraic link associated to the singularity.

How about other counting functions?

Recall

$\operatorname{Hilb}_{n}(X)=\left\{\mathcal{O}_{X} \rightarrow M: \ell(M)=n\right\} \leadsto Z_{X}^{\mathrm{Hilb}}(t)$
$\operatorname{Quot}_{\mathcal{E}, n}(X)=\{\mathcal{E} \rightarrow M: \ell(M)=n\} \leadsto Z_{\mathcal{E}}(t)$
So $Z_{X}^{\text {Hilb }}(t)=Z_{\mathcal{O}_{X}}(t)$.

Questions

- Is the Quot zeta function $Z_{\mathcal{E}}(t)$ as nice as the Hilbert zeta function?
- By varying \mathcal{E}, how much does $Z_{\mathcal{E}}(t)$ enrich $Z_{X}^{\mathrm{Hilb}}(t)$?

Short answers

- 99% yes;
- A lot!

Main results about $Z_{\mathcal{E}}(t)$

Settings

X reduced curve over $k=\bar{k} ; \mathcal{E}$ a rank- d torsion-free bundle over X.
Typical example: $\mathcal{E}=\mathcal{O}_{X}^{d}, d \geq 0$.
Theorem (H.-Jiang)
$Z_{\mathcal{E}}(t)$ is rational in t "with known denominator". More precisely, $Z_{\mathcal{E}}(t) / Z_{\mathcal{O}_{\tilde{X}}^{d}}(t)$ is a polynomial, where \widetilde{X} is the normalization of X.

Remark

For smooth curve $\widetilde{X}, Z_{\mathcal{O}_{\tilde{X}}^{d}}(t)$ is rational. (Bifet '89, BFP '20)
Theorem (H.-Jiang)
If X has only planar singularities, and $\mathcal{E}=\mathcal{O}_{X}^{d}$, then $Z_{\mathcal{E}}(t)$ satisfies a functional equation when specialized to point-counts over finite fields.

Relation to combinatorics

Theorem (H.-Jiang)
Let X be the curve $\left\{y^{2}=x^{n}\right\}$ (when $n=2 m$ is even and char $k=2$, replace by $y\left(y-x^{m}\right)=0$), and $\mathcal{E}=\mathcal{O}_{X}^{d}$. Then there are explicit polynomials in \mathbb{L} and t that compute $Z_{\mathcal{O}_{X}^{d}}(t)$. The formulas

- depend on whether n is odd or even;
- involve partitions, Hall polynomials and q-hypergeometric series.

Consequences

The functional equation implies a nontrivial identity about Hall polynomials. A direct proof can be given if $n=2$ or n is odd. A direct proof is so far unknown if $n \geq 4$ is even.

Open question
Do these complicated polynomials recover extra info about the associated links?

Break

Stack of 0-dimensional sheaves

- $\operatorname{Coh}_{n}(X)$ parametrizes 0-dimensional sheaves of length n up to isomorphism.
- It is a stack.
- Its motive is still defined. (Behrend-Dhillon '07)

Question
 How to make sense of the motive of $\operatorname{Coh}_{n}(X)$, or a stack in general?

Orbit-stabilizer theorem

Example from counting

- Let a finite group G act on a finite set X.
- The orbit space X / G can be viewed as a "quotient stack" $[X / G]$ by counting each element with a fractional weight: $1 / \mid$ Stabilizer \mid.
- By the orbit-stabilizer theorem, the weighted cardinality of $[X / G]$ is precisely $|X| /|G|$. (Not necessarily an integer)

Motive of a quotient stack

- Let the algebraic group GL_{n} act on a variety X.
- One can form the quotient stack $\left[X / \mathrm{GL}_{n}\right]$.
- The motive of $\left[X / \mathrm{GL}_{n}\right]$ is defined formally as $[X] /\left[\mathrm{GL}_{n}\right]$.
- [[X/GL $\left.\left.\mathrm{GL}_{n}\right]\right]$ lives in the localization $K_{0}\left(\operatorname{Var}_{k}\right)\left[\mathbb{L}^{-1},\left(\mathbb{L}^{b}-1\right)^{-1}: b \geq 1\right]$ because $\left[\mathrm{GL}_{n}\right]=\mathbb{L}\binom{n}{2}(\mathbb{L}-1) \ldots\left(\mathbb{L}^{n}-1\right)$.

So, is $\operatorname{Coh}_{n}(X)$ a quotient stack?

Yes - using the variety of "matrix points".
Matrix points
For $n \geq 0$ and a variety X / k, we can define a variety $C_{n}(X)$ of $n \times n$-matrix points on X. As a moduli space, $C_{n}(X)$ parametrizes length $-n$ sheaves together with an ordered basis on the global sections:
$C_{n}(X)(k)=\left\{(M, \iota): \ell(M)=n, \iota \in \operatorname{Isom}_{\operatorname{Vect}_{k}}\left(k^{n}, H^{0}(X ; M)\right)\right\}$.
Concretely, if X is an affine variety cut out by $f_{1}\left(T_{1}, \ldots, T_{m}\right)=$
$\cdots=f_{r}\left(T_{1}, \ldots, T_{m}\right)=0$, then $C_{n}(X)(k)$ is the set of pairwise commuting matrices $A_{1}, \ldots, A_{m} \in \operatorname{Mat}_{n}(k)$ satisfying $f_{j}\left(A_{1}, \ldots, A_{m}\right)=0$ for all j. (We say $\left(A_{1}, \ldots, A_{m}\right)$ is a matrix point on X.)

Key fact
$\operatorname{Coh}_{n}(X)=\left[C_{n}(X) / \mathrm{GL}_{n}\right]$, so $\left[\operatorname{Coh}_{n}(X)\right]=\left[C_{n}(X)\right] /\left[\mathrm{GL}_{n}\right]$.

The generating function

Recall $\widehat{Z}_{X}(t)=\sum_{n}\left[\operatorname{Coh}_{n}(X)\right] t^{n}=\sum_{n}\left[C_{n}(X)\right] /\left[\mathrm{GL}_{n}\right] t^{n}$. View it in $K_{0}\left(\operatorname{Var}_{k}\right)\left[\mathbb{L}^{-1},\left(\mathbb{L}^{b}-1\right)^{-1}\right] \subseteq K_{0}\left(\operatorname{Var}_{k}\right)\left[\left[\mathbb{L}^{-1}\right]\right]$.

Facts

- (Euler's identity) $\widehat{Z}_{\mathbb{A}^{1}}(t)=1 /\left[(1-t)\left(1-\mathbb{L}^{-1} t\right)\left(1-\mathbb{L}^{-2} t\right) \ldots\right]$.
- (Feit-Fine '60) $\widehat{Z}_{\mathbb{A}^{2}}(t)$ is also of the form $1 /($ infinite product).
- When $X=\mathbb{A}^{2}, C_{n}(X)$ is the commuting variety, as well as an example of unframed quiver variety. Feit-Fine formula played a role in the Donaldson-Thomas theory of 3-folds. (Behrend-Bryan-Szendrői, '13)
- (H.) Explicitly computed $\widehat{Z}_{X}(t)$ in terms of the zeta function for X smooth of $\operatorname{dim} \leq 2$.
- The formulas played a role in providing matrix-point models for Sato-Tate type distributions in arithmetic geometry. (H.-Ono-Saad, BBVX)

Singular curves?

Question

If X is a reduced singular curve, then what does $\widehat{Z}_{X}(t)$ look like?

Theorem (H.)
If $X=\{x y=0\}$ (same as $y^{2}=x^{2}$ when char $k \neq 2$), then $\widehat{Z}_{X}(t)$ has an explicit formula of the form (interesting inf sum)/(easy inf product). The infinite sum involves partitions and basic hypergeometric functions.

Conjecture

In general, $\widehat{Z}_{X}(t)$ should be of the form (some numerator) / (well-understood denominator). More precisely, a series can be called a "numerator" if its specialization to finite-field point-count gives an entire function in t.

New results

Theorem (H.-Jiang)

"Locally speaking", for any variety X (not necessarily a curve), $\widehat{Z}_{X}(t)$ can be explicitly computed by a formula in terms of the Quot zeta function $Z_{\mathcal{O}_{X}^{d}}(t)$ for all $d \geq 0$.

As a consequence of this and our formulas for $Z_{\mathcal{O}_{X}^{d}}(t)$, we get
Theorem (H.-Jiang)
Let X be the curve $\left\{y^{2}=x^{n}\right\}$ (when $n=2 m$ is even and $\operatorname{char} k=2$, replace by $y\left(y-x^{m}\right)=0$), then the " $n u m e r a t o r " ~ f o r ~ \widehat{Z}_{X}(t)$ is an explicit power series in \mathbb{L}^{-1} and t involving partitions, Hall polynomials and q-hypergeometric series.

Modular forms and Ramanujan?

Some cases of $\left\{y^{2}=x^{n}\right\}$ are actually simpler, e.g., when $n=3$, the numerator (called $H(t ; q))$ is $\sum_{n \geq 0} q^{n^{2}} /\left((1-q) \ldots\left(1-q^{n}\right)\right) t^{2 n}$, where $q=\mathbb{L}^{-1}$.

Special values at $t= \pm 1$
When $t= \pm 1$ and $n=3$, this series is the Fourier expansion of a modular form by Rogers-Ramanujan identity. Similar for $n \geq 5$ odd, except we need Gordon-Rogers-Ramanujan identity. For $n=2 m$ even, the \mathbb{L}^{-1}, t-series is far from understood (except $n=2$), but it appears that $H(1 ; q)=1$ and $H(-1 ; q)$ is an explicit Dedekind η-quotient that gives a modular form.

Far-reaching open question
Why should modular forms even appear? What does the modular form say about the singularity? For example, when X has planar singularities, what does the modular form say about the associated links?

Summary

In this talk, I have talked about

- Two moduli spaces of 0-dimensional sheaves: Quot scheme and the stack of 0-dimensional sheaves;
- Two counting functions they produce: $Z_{\mathcal{E}}(t)$ and $\widehat{Z}_{X}(t)$;
- A result that relate them explicitly;
- Some general theorems and exact formulas about them, when X is a singular curve.
- Open questions suggested by the exact formulas in relation to combinatorics, modular forms, knot theory...

Thank you for listening!

