Zeta functions on orders

Yifeng Huang (UBC)
joint with Ruofan Jiang

Dedekind zeta function

- R: a Dedekind domain (say, the ring of integers in a number field or a function field).
- $\zeta_{R}(s):=\sum_{I}|R / I|^{-s}$, summed over ideals I with $|R / I|<\infty$.
- Has meromorphic continuation and functional equation $s \mapsto 1-s$.

A generalization

Lattice zeta function

- Let M be an R-module.
- $\zeta_{M}(s):=\sum_{L}|M / L|^{-s}$, summed over R-submodules L with $|M / L|<\infty$.
- When $M=R$, this is just the Dedekind zeta function.
- (Solomon '77) When R is Dedekind and $M=R^{d}$, then $\zeta_{M}(s)=\zeta_{R}(s) \zeta_{R}(s-1) \ldots \zeta_{R}(s-d+1)$. From this, it is easy to verify a functional equation $s \mapsto d-s$.

An analog

Cohen-Lenstra zeta function

- $\widehat{\zeta}_{R}(s):=\sum_{M}|M|^{-s} /|\operatorname{Aut}(M)|$, summed over finite R-modules M up to isomorphism.
- (Cohen-Lenstra '83) When R is Dedekind, then $\widehat{\zeta}_{R}(s)=\zeta_{R}(s+1) \zeta_{R}(s+2) \ldots$. Moreover, it has meromorphic continuation and a functional equation $s \mapsto 1-s$.

Question

What if R is a non-maximal order, thus not Dedekind?

Insight

Function-field case gives us lots of interesting examples. They are also geometric since order $=$ singularity curve.

Dedekind zeta function for orders

Let R be an order in the maximal order \widetilde{R}.

Facts

- $\zeta_{R}(s)$ has meromorphic continuation; in fact, $\zeta_{R}(s) / \zeta_{\widetilde{R}}(s)$ is entire.
- When R is "Gorenstein", then $\zeta_{R}(s)$ has a functional equation $s \mapsto 1-s$.
- When R is the coordinate ring of a singular curve X over $\mathbb{F}_{q}, \zeta_{R}(s)$ encodes point-counts of Hilbert schemes of points on X.
- If X has only planar singularities, then R is Gorenstein.
- Typical example: $R=\mathbb{F}_{q}[X, Y] /\left(Y^{m}-X^{n}\right) \subseteq \widetilde{R}=\mathbb{F}_{q}[[T]], m, n$ pairwise coprime, via $X=T^{m}, Y=T^{n}$.
- The exact formula here involves a combinatorially interesting polynomial in $q, t=q^{-s}$ (called the generalized q, t-Catalan number). (Gorsky-Mazin '13).
- (Oblomkov-Rasmussen-Shende conjecture '18) For any curve with planar singularities, $\zeta_{R}(s)$ should encode knot invariants!!!

Lattice zeta function for orders

Let R be an order and M be an " R-lattice of rank d " (e.g., R^{d} or its finite-index submodule).

New results (and background)

- $\zeta_{M}(s)$ has meromorphic continuation; in fact, $\zeta_{R}(s) / \zeta_{\widetilde{R}^{d}}(s)$ is entire. (Bushnell-Reiner '81)
- (H.-Jiang) When R is Gorenstein, then $\zeta_{R^{d}}(s)$ has a functional equation $s \mapsto d-s$.
- (H.-Jiang) When $R=\mathbb{F}_{q}[X, Y] /\left(Y^{2}-X^{n}\right), n \geq 2, q$ odd, then $\zeta_{R^{d}}(s)$ is an explicit polynomial in $q, t=q^{-s}$ involving partitions, Hall polynomials and q-hypergeometric functions.
- Thus: the functional equation implies combinatorial identities; we have found a nontrivial direct proof for the case $n=2$ or n odd.

Cohen-Lenstra zeta function for orders

Let R be an order. Consider $\widehat{\zeta}_{R}(s)$

- Nothing is known in the number field case.
- Assume function field from now. Then $\widehat{\zeta}_{R}(s)$ is related to counting tuples of pairwise commuting matrices satisfying Diophantine equations. E.g. $A B=B A=0$ for $R=\mathbb{F}_{q}[X, Y] /(X Y)$. (H.)
- (H.-Jiang) $\widehat{\zeta}_{R}(s)$ can be computed in terms of $\zeta_{R^{d}}(t)$ for all $d \geq 0$.
- (H.-Jiang) When $R=\mathbb{F}_{q}[X, Y] /\left(Y^{2}-X^{n}\right), n \geq 2, q$ odd, then $\widehat{\zeta}_{R}(s)$ is an explicit power series in $q^{-1}, t=q^{-s}$ involving partitions, etc.
- Remark: When $n>2$, direct matrix count is hard; we proved the above using our formulas for $\zeta_{R^{d}}(s)$.
- The formulas surprisingly give modular forms and Ramanujan-type series.
- Example: $n=3$, get $\sum_{n \geq 0} Q^{n^{2}} /\left((1-Q) \ldots\left(1-Q^{n}\right)\right) t^{2 n}$, where $Q=q^{-1}$. At $t= \pm 1$, get modular form by Rogers-Ramanujan.

Future goal

An obvious question

Existence of meromorphic continuation of $\widehat{\zeta}_{R}(s)$ is not known in general, but true in known examples so far.

Further-reaching questions

- How do these richer formulas, modular forms, etc. say about the knot theory associated to the singularities?
- Any hope of exact formulas in the number field case?

Thank you for listening!

