In the absence of partitions

Yifeng Huang (UBC)

w/ Gilyoung Cheong and w/ Ruofan Jiang

Partitions

- Partitions index many things.
- Representation theory: irreducible representations of S_{n}.
- Algebraic geometry: Schubert varieties in a Grassmannian.
- Symmetric functions: elements of many bases.

Question
 Other interesting models for partitions?

Yes - let's look at the one used to define the Hall polynomial.

Types of abelian p-groups

- By the classification theorem, any finite abelian p-group M is uniquely of the form

$$
M=\mathbb{Z} / p^{\lambda_{1}} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / p^{\lambda_{l}} \mathbb{Z}, \quad \lambda_{1} \geq \cdots \geq \lambda_{l}>0
$$

- We say the partition $\lambda:=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ is the type of M.
- For abelian p-groups $M \subseteq N$, we define the cotype of M in N as the type of M / N.

Hall polynomials

Definition

- Given any partitions λ, μ, ν.
- Define $g_{\mu, \nu}^{\lambda}(p)$ to be the number of subgroups of a fixed type- λ p-group of type μ and cotype ν, for any prime p.
- (Hall) $g_{\mu, \nu}^{\lambda}(p)$ is a polynomial in p, called the Hall polynomial; $g_{\mu, \nu}^{\lambda}(t)=g_{\nu, \mu}^{\lambda}(t) ; g_{\mu, \nu}^{\lambda}(0)$ is the Littlewood-Richardson coefficient.

Remarks

- The Hall algebra has a basis indexed by partitions and structure constants given by $g_{\mu, \nu}^{\lambda}(t)$.
- The Hall-Littlewood (symmetric) function interpolates many famous symmetric functions. The structure constants are essentially $g_{\mu, \nu}^{\lambda}\left(t^{-1}\right)$.

Automorphisms

Definition

- Let $a_{\lambda}(p)$ be the number of automorphisms of an abelian p-group of type λ.
- Important formula:

$$
a_{\lambda}(p)=p^{\sum_{i \geq 1} \lambda_{i}^{\prime 2}} \prod_{i \geq 0}\left(p^{-1} ; p^{-1}\right)_{\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}}
$$

where λ_{i}^{\prime} is the i-th column of λ, and

$$
(q ; q)_{n}:=(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right) .
$$

- In particular, $a_{\lambda}(p)$ is a polynomial in p.
- $a_{\lambda}(t)$ plays a role in Hall-Littlewood functions.

Takeaway

Some functions of partitions have algebraic interpretations like this.

More explicit formulas

- $g_{\mu, \nu}^{\lambda}(t)$ has an explicit (though very complicated) formula, and the form involves q-hypergeometric functions.
- Easier special case: if $\lambda=\left(m^{d}\right)$ (a box), $\nu=\left(m^{d}\right)-\mu$, then

$$
g_{\mu, \nu}^{\lambda}(t)=\frac{t^{d|\mu|}}{a_{\mu}(t)} \frac{\left(t^{-1} ; t^{-1}\right)_{d}}{\left(t^{-1} ; t^{-1}\right)_{d-\mu_{1}^{\prime}}}
$$

- Summations are not too bad:

$$
\sum_{\nu} g_{\mu, \nu}^{\lambda}(t)=t^{\sum_{i \geq 1} \mu_{i}^{\prime}\left(\lambda_{i}^{\prime}-\mu_{i}^{\prime}\right)} \prod_{i \geq 1}\left[\begin{array}{c}
\lambda_{i}^{\prime}-\mu_{i+1}^{\prime} \\
\lambda_{i}^{\prime}-\mu_{i}^{\prime}
\end{array}\right]_{t^{-1}}
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}:=(q ; q)_{n} /\left((q ; q)_{k}(q ; q)_{n-k}\right)$. (Warnaar '13)

Summation identities

Interpreting partitions as types can lead to summation identities.
A toy example

- $\sum_{\mu, \nu} g_{\mu, \nu}^{\left(m^{d}\right)}(t) \cdot t^{d|\mu|} \cdot \frac{\left(t^{-1} ; t^{-1}\right)_{d}}{\left(t^{-1} ; t^{-1}\right)_{d-\mu_{1}^{\prime}}}=t^{m d^{2}}$.
- Proof. Suffices to prove the case $t=p$ is a prime.
- RHS counts homomorphisms $f:\left(\mathbb{Z} / p^{m}\right)^{d} \rightarrow\left(\mathbb{Z} / p^{m}\right)^{d}$. (They can be given by $d \times d$ matrices over \mathbb{Z} / p^{m}.)
- LHS counts it in a different way.
- Let $M=\operatorname{im}(f)$ and μ be the type of M.
- There are $\sum_{\nu} g_{\mu, \nu}^{\left(m^{d}\right)}(p)$ choices of M.
- If M is fixed, then f is determined by a surjection $\left(\mathbb{Z} / p^{m}\right)^{d} \rightarrow M$.
- By Nakayama's lemma, there are $p^{d|\mu|} \cdot \frac{\left(p^{-1} ; p^{-1}\right)_{d}}{\left(p^{-1} ; p^{-1}\right)_{d-\mu_{1}^{\prime}}}$ many.

In the absence of partitions

A recipe to generalize

- Recall: partition \leadsto finite abelian p-group $=$ finite \mathbb{Z}_{p}-module.
- Same story if \mathbb{Z}_{p} is replaced by any DVR.
- Replace \mathbb{Z}_{p} by a non-DVR $R \leadsto$ Replace partitions by finite R-modules.

Question

Does this generalization lead to interesting identities?

Answer

- Sometimes we get identities with summations over R-modules even when they are impossible to index explicitly. (w/Cheong)
- In special cases, we can, which lead to partition identities, though more convoluted. (w/ Jiang)

Random partitions from random matrices

- The cokernel of \mathbb{Z}_{p}-matrix gives a \mathbb{Z}_{p}-module.
- Thus, a matrix gives a partition by taking the type of the cokernel.
- When the matrix is random, we get a random partition.
- There are many random matrix models: uniformly random matrix, uniformly random symmetric matrix, random 0,1-matrix (Wood), products of random matrices (van Peski), polynomials of random matrices (Cheong, H.), etc.
- They each produce a random partition with interesting distribution.
- Some have graph-theoretic motivation: symmetric 0,1 -matrix \sim random graph, cokernel \leadsto sandpile group.

The fact that "probabilities sum up to 1 " often produces interesting identities. Direct proof was sometimes found after the probability distribution, often using tools from Hall-Littlewood functions.

Work with Cheong

Overview

- Fix a monic polynomial $P(t)$ in $\mathbb{Z}_{p}[t]$.
- Let $X \in \operatorname{Mat}_{n}\left(\mathbb{Z}_{p}\right)$ be uniformly random.
- Question. How does $\operatorname{cok}(P(X))$ (as an abelian p-group) distribute?
- Conjecture (Cheong, H. '21). Proposed a distribution, in which the formula is sensitive to how $P(t)$ is factorized $\bmod p$.
- It turns out that one has to remember an additional structure on $\operatorname{cok}(P(X))$! (Cheong, Lee, Kaplan, etc.)

Non-DVR comes into play

- Let $R=\mathbb{Z}_{p}[t] / P(t)$. Then there is an R-module structure on $\operatorname{cok}(P(X))$.
- t acts on $\operatorname{cok}(P(X))$ by sending $v \bmod \operatorname{im}(P(X))$ to $X v \bmod \operatorname{im}(P(X))$.

Work with Cheong

Theorem (Cheong, Yu '23)
For any finite R-module M, the probability that $\operatorname{cok}(P(X)) \cong_{R} M$, as $n \rightarrow \infty$, approaches $1 / \mid$ Aut $_{R} M \mid \cdot \prod_{j=1}^{l}\left(p^{-d_{j}} ; p^{-d_{j}}\right)_{\infty}$ if M satisfies a " $b_{0}=b_{1}$ " condition, and zero otherwise, where

- l, d_{1}, \ldots, d_{l} are read from the factorization data of $P(t) \bmod p$.
- ' $b_{0}=b_{1}$ " condition comes from minimal resolutions and Betti numbers of localizations of M.

Consequence
The sum of $1 /\left|\operatorname{Aut}_{R} M\right|$ over finite R-modules satisfying $b_{0}=b_{1}$ condition is $\prod_{j=1}^{l}\left(p^{-d_{j}} ; p^{-d_{j}}\right)_{\infty}^{-1}$. A non-partition-sum result!

Work with Cheong

Theorem (Cheong, H.)
A similar but different formula holds for an analogous model, in which the random matrix X has a fixed residue class mod p. Moreover, our formula is exact for each n (before taking limit).

The proof relies on understanding a more straightforward model that produces an R-module. Namely, the cokernel of an R-matrix.

Work with Cheong

Theorem (Cheong, H.)
Let R be any complete Noetherian local ring with residue field \mathbb{F}_{q}. Let M be a finite R-module; we have well-defined integers $b_{0}(M), b_{1}(M)$ called the Betti numbers of M. Let $n, u \geq 0$ and let X be a uniformly random $n \times(n+u)$ matrix over R. Then the probability that $\operatorname{cok}_{R}(X) \cong_{R} M$ is $1 /\left|\operatorname{Aut}_{R} M\right| \cdot \prod_{i=u+b_{0}-b_{1}+1}^{n+u}\left(1-q^{-i}\right) \prod_{i=n-b_{0}+1}^{n}\left(1-q^{-i}\right)$ if $n \geq b_{0} \geq b_{1}-u$, and zero otherwise.

Setting total probability $=1$ and some elementary work, one can obtain a non-partition-sum analog of Euler's identity:

Corollary

When summed over all finite R-modules M, we have
$\sum_{M} \frac{t^{\ell(M)}}{\left|\operatorname{Aut}_{R} M\right|}\left(t q^{-1} ; q^{-1}\right)_{b_{0}(M)-b_{1}(M)}^{-1}=\left(t q^{-1} ; q^{-1}\right)_{\infty}^{-1}$, where $\ell(M)$ is defined by $q^{\ell} M=|M|$.

Break

Lattice zeta function

Work of Solomon '77

- Consider $L=\mathbb{Z}^{d}$, visualized as a full lattice in \mathbb{Q}^{d} (or \mathbb{R}^{d}).
- A sublattice $M \subseteq L$ is a \mathbb{Z}-submodule of L of finite index. Write the index as $(L: M)$.
- Question. How many sublattices of given index are there?
- To study this (and its asymptotic), Solomon defined a generating function $\zeta_{L}(s)=\sum_{M}(L: M)^{-s}$.
- He found that $\zeta_{L}(s)=\zeta(s) \zeta(s-1) \ldots \zeta(s-d+1)$, where $\zeta(s)$ is the Riemann zeta function.

Relation to partitions

For each prime p, the p-part of \mathbb{Z}^{d} / M is a finite abelian p-group, which has a type. One can express $\zeta_{L}(s)$ in terms of partition sums by grouping together all M 's that have the same p-type.

Work with Jiang

An analogous setting

- Let $k=\mathbb{F}_{q}$ be a finite field and $R=R_{2, n}=k[[X, Y]] /\left(Y^{2}-X^{n}\right)$, $n \geq 2$. (If both $n=2 m, q$ are even, replace by $Y\left(Y-X^{m}\right)$.)
- What is $Z_{R^{d}}(t):=\sum_{M \subseteq R^{d}} t^{\left[R^{d}: M\right]}$, summed over R-submodules M with $\left[R^{d}: M\right]:=\operatorname{dim}_{k} R^{d} / M<\infty$?

Previous work

- R is not a DVR, so M can no longer be classified by partitions.
- Nevertheless, such functions (for R in more generality) are known to have nice general properties. (Bushnell, Reiner '80s)
- When $d=1$, explicit formulas are expected to have knot-theoretic interpretation. (Oblomkov, Rasmussen, Shende '18)
- When $d=1$ and $R=k[[X, Y]] /\left(Y^{m}-X^{n}\right)$ with m, n coprime, we get generalized q, t-Catalan. (Gorsky, Mazin '13)

Our formulas

Theorem (H., Jiang)
For $R=R_{2,2 m+1}, m \geq 1$, then $(t ; q)_{d} Z_{R^{d}}(t)$ is the q, t-polynomial $C_{m, d}:=$

$$
\sum_{\mu \subseteq\left(m^{d}\right)} g_{\mu,\left(m^{d}\right)-\mu}^{\left(m^{d}\right)}(q)\left(q^{d} t^{2}\right)^{|\mu|}
$$

For $R=R_{2,2 m}, m \geq 1$, then $(t ; q)_{d}^{2} Z_{R^{d}}(t)$ is the q, t-polynomial $N_{m, d}:=$

$$
\sum_{\lambda, \mu, \nu \subseteq\left(m^{d}\right)} g_{\lambda,\left(m^{d}\right)-\lambda}^{\left(m^{d}\right)}(q) g_{\mu, \nu}^{\lambda}(q) t^{|\lambda|}\left(q^{d} t\right)^{|\lambda|-|\mu|}(t ; q)_{d-\lambda_{m}^{\prime}}^{2} \frac{\left(q^{-1} ; q^{-1}\right)_{\lambda_{m}^{\prime}}}{\left(q^{-1} ; q^{-1}\right)_{\mu_{m}^{\prime}}} .
$$

Remark
One can make both formulas explicit by rewriting $g_{\lambda,\left(m^{d}\right)-\lambda}^{\left(m^{d}\right)}$ and $\sum_{\nu} g_{\mu, \nu}^{\lambda}$.

Tables

Case of $Y^{2}=X^{3}$:

d	$C_{1, d}(t, q)$
0	1
1	$1+q t^{2}$
2	$1+\left(q^{3}+q^{2}\right) t^{2}+q^{4} t^{4}$
3	$1+\left(q^{5}+q^{4}+q^{3}\right) t^{2}+\left(q^{8}+q^{7}+q^{6}\right) t^{4}+q^{9} t^{6}$
4	$1+\left(q^{7}+q^{6}+q^{5}+q^{4}\right) t^{2}+\left(q^{12}+q^{11}+2 q^{10}+q^{9}+q^{8}\right) t^{4}+\left(q^{15}+\right.$
	$\left.q^{14}+q^{13}+q^{12}\right) t^{6}+q^{16} t^{8}$

Table: $C_{m, d}(t, q)$ with $m=1$

Tables

Case of $Y^{2}=X^{2}$:

d	$N_{1, d}(-t, q)$
0	1
1	$1+t+q t^{2}$
2	$1+(q+1) t+\left(q^{3}+q^{2}+q\right) t^{2}+\left(q^{3}+q^{2}\right) t^{3}+q^{4} t^{4}$
3	$1+\left(q^{2}+q+1\right) t+\left(q^{5}+q^{4}+2 q^{3}+q^{2}+q\right) t^{2}+\left(q^{6}+2 q^{5}+2 q^{4}+\right.$
	$\left.2 q^{3}\right) t^{3}+\left(q^{8}+q^{7}+2 q^{6}+q^{5}+q^{4}\right) t^{4}+\left(q^{8}+q^{7}+q^{6}\right) t^{5}+q^{9} t^{6}$
4	$1+\left(q^{3}+q^{2}+q+1\right) t+\left(q^{7}+q^{6}+2 q^{5}+2 q^{4}+2 q^{3}+q^{2}+q\right) t^{2}+\left(q^{9}+\right.$
	$\left.2 q^{8}+3 q^{7}+4 q^{6}+3 q^{5}+2 q^{4}+q^{3}\right) t^{3}+\left(q^{12}+q^{11}+3 q^{10}+3 q^{9}+4 q^{8}+\right.$
	$\left.3 q^{7}+3 q^{6}+q^{5}\right) t^{4}+\left(q^{13}+2 q^{12}+3 q^{11}+4 q^{10}+3 q^{9}+2 q^{8}+q^{7}\right) t^{5}+\left(q^{15}+\right.$
	$\left.q^{14}+2 q^{13}+2 q^{12}+2 q^{11}+q^{10}+q^{9}\right) t^{6}+\left(q^{15}+q^{14}+q^{13}+q^{12}\right) t^{7}+q^{16} t^{8}$

Table: $N_{m, d}(-t, q)$ with $m=1$

Combinatorial properties

Functional equation
A general theorem we prove implies that if $F(t, q)=C_{m, d}$ or $N_{m, d}$, then

$$
F\left(q^{-d} t^{-1}, q\right)=\left(q^{d} t^{2}\right)^{-d m} F(t, q)
$$

Open problem
Give a direct proof of the above for $N_{m, d}$. Open for $m \geq 2$.

Positivity

$C_{m, d}(\pm t, q) \in \mathbb{N}[t, q]$ is clear from the formula. We expect that $N_{m, d}(-t, q) \in \mathbb{N}[t, q]$ and there is a nontrivial proof when $m=1$.

Open problem
Prove or disprove: $N_{m, d}(-t, q) \in \mathbb{N}[t, q]$ for $m \geq 2$. How about unimodality?

Thank you for listening!

One more table

Case of $Y^{2}=X^{6}$ (you can figure out the whole $d=3$ by functional equ):

d	$N_{3, d}(-t, q)$
0	1
1	$1+t+q t^{2}+q t^{3}+q^{2} t^{4}+q^{2} t^{5}+q^{3} t^{6}$
2	$1+(q+1) t+\left(q^{3}+q^{2}+q\right) t^{2}+\left(q^{4}+2 q^{3}+q^{2}\right) t^{3}+\left(q^{6}+q^{5}+2 q^{4}+\right.$
	$\left.q^{3}\right) t^{4}+\left(q^{7}+2 q^{6}+2 q^{5}+q^{4}\right) t^{5}+\left(q^{9}+q^{8}+2 q^{7}+2 q^{6}+q^{5}\right) t^{6}+$
	$\left(q^{9}+2 q^{8}+2 q^{7}+q^{6}\right) t^{7}+\left(q^{10}+q^{9}+2 q^{8}+q^{7}\right) t^{8}+\left(q^{10}+2 q^{9}+\right.$
	$\left.q^{8}\right) t^{9}+\left(q^{11}+q^{10}+q^{9}\right) t^{10}+\left(q^{11}+q^{10}\right) t^{11}+q^{12} t^{12}$
3	$1+\left(q^{2}+q+1\right) t+\left(q^{5}+q^{4}+2 q^{3}+q^{2}+q\right) t^{2}+\left(q^{7}+2 q^{6}+3 q^{5}+2 q^{4}+\right.$
	$\left.2 q^{3}\right) t^{3}+\left(q^{10}+q^{9}+3 q^{8}+3 q^{7}+4 q^{6}+2 q^{5}+q^{4}\right) t^{4}+\left(q^{12}+2 q^{11}+\right.$
	$\left.4 q^{10}+4 q^{9}+5 q^{8}+3 q^{7}+2 q^{6}\right) t^{5}+\left(q^{15}+q^{14}+3 q^{13}+4 q^{12}+6 q^{11}+\right.$
	$\left.5 q^{10}+5 q^{9}+2 q^{8}+q^{7}\right) t^{6}+\left(q^{16}+3 q^{15}+5 q^{14}+7 q^{13}+6 q^{12}+6 q^{11}+\right.$
	$\left.3 q^{10}+2 q^{9}\right) t^{7}+\left(q^{18}+2 q^{17}+5 q^{16}+6 q^{15}+8 q^{14}+6 q^{13}+5 q^{12}+\right.$
	$\left.2 q^{11}+q^{10}\right) t^{8}+\left(q^{19}+4 q^{18}+6 q^{17}+8 q^{16}+7 q^{15}+6 q^{14}+3 q^{13}+\right.$
	$\left.2 q^{12}\right) t^{9}+\left(q^{21}+2 q^{20}+5 q^{19}+6 q^{18}+8 q^{17}+6 q^{16}+5 q^{15}+2 q^{14}+\right.$
	$\left.q^{13}\right) t^{10}+\left(q^{22}+3 q^{21}+5 q^{20}+7 q^{19}+6 q^{18}+6 q^{17}+3 q^{16}+2 q^{15}\right) t^{11}+$

