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Introduction

Partitions

Partitions index many things.

Representation theory: irreducible representations of Sn.

Algebraic geometry: Schubert varieties in a Grassmannian.

Symmetric functions: elements of many bases.

Question

Other interesting models for partitions?

Yes — let’s look at the one used to define the Hall polynomial.
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Introduction

Types of abelian p-groups

By the classification theorem, any finite abelian p-group M is
uniquely of the form

M = Z/pλ1Z⊕ · · · ⊕ Z/pλlZ, λ1 ≥ · · · ≥ λl > 0.

We say the partition λ := (λ1, . . . , λl) is the type of M .

For abelian p-groups M ⊆ N , we define the cotype of M in N as the
type of M/N .
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Introduction

Hall polynomials

Definition

Given any partitions λ, µ, ν.

Define gλµ,ν(p) to be the number of subgroups of a fixed type-λ
p-group of type µ and cotype ν, for any prime p.

(Hall) gλµ,ν(p) is a polynomial in p, called the Hall polynomial;

gλµ,ν(t) = gλν,µ(t); g
λ
µ,ν(0) is the Littlewood–Richardson coefficient.

Remarks

The Hall algebra has a basis indexed by partitions and structure
constants given by gλµ,ν(t).

The Hall–Littlewood (symmetric) function interpolates many famous
symmetric functions. The structure constants are essentially
gλµ,ν(t

−1).
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Introduction

Automorphisms

Definition

Let aλ(p) be the number of automorphisms of an abelian p-group of
type λ.

Important formula:

aλ(p) = p
∑

i≥1 λ
′2
i

∏
i≥0

(p−1; p−1)λ′
i−λ′

i+1
,

where λ′
i is the i-th column of λ, and

(q; q)n := (1− q)(1− q2) . . . (1− qn).

In particular, aλ(p) is a polynomial in p.

aλ(t) plays a role in Hall–Littlewood functions.

Takeaway

Some functions of partitions have algebraic interpretations like this.
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Introduction

More explicit formulas

gλµ,ν(t) has an explicit (though very complicated) formula, and the
form involves q-hypergeometric functions.

Easier special case: if λ = (md) (a box), ν = (md)− µ, then

gλµ,ν(t) =
td|µ|

aµ(t)

(t−1; t−1)d
(t−1; t−1)d−µ′

1

.

Summations are not too bad:∑
ν

gλµ,ν(t) = t
∑

i≥1 µ
′
i(λ

′
i−µ′

i)
∏
i≥1

[
λ′
i − µ′

i+1

λ′
i − µ′

i

]
t−1

,

where
[
n
k

]
q
:= (q; q)n/((q; q)k(q; q)n−k). (Warnaar ’13)
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Introduction

Summation identities

Interpreting partitions as types can lead to summation identities.

A toy example∑
µ,ν g

(md)
µ,ν (t) · td|µ| · (t−1;t−1)d

(t−1;t−1)d−µ′1
= tmd2 .

Proof. Suffices to prove the case t = p is a prime.

RHS counts homomorphisms f : (Z/pm)d → (Z/pm)d. (They can be
given by d× d matrices over Z/pm.)

LHS counts it in a different way.

Let M = im(f) and µ be the type of M .

There are
∑

ν g
(md)
µ,ν (p) choices of M .

If M is fixed, then f is determined by a surjection (Z/pm)d → M .

By Nakayama’s lemma, there are pd|µ| · (p−1;p−1)d
(p−1;p−1)d−µ′1

many.
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Introduction

In the absence of partitions

A recipe to generalize

Recall: partition ; finite abelian p-group = finite Zp-module.

Same story if Zp is replaced by any DVR.

Replace Zp by a non-DVR R ; Replace partitions by finite
R-modules.

Question

Does this generalization lead to interesting identities?

Answer

Sometimes we get identities with summations over R-modules even
when they are impossible to index explicitly. (w/ Cheong)

In special cases, we can, which lead to partition identities, though
more convoluted. (w/ Jiang)
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Random matrix

Random partitions from random matrices

The cokernel of Zp-matrix gives a Zp-module.

Thus, a matrix gives a partition by taking the type of the cokernel.

When the matrix is random, we get a random partition.

There are many random matrix models: uniformly random matrix,
uniformly random symmetric matrix, random 0, 1-matrix (Wood),
products of random matrices (van Peski), polynomials of random
matrices (Cheong, H.), etc.

They each produce a random partition with interesting distribution.

Some have graph-theoretic motivation: symmetric 0, 1-matrix ;

random graph, cokernel ; sandpile group.

The fact that “probabilities sum up to 1” often produces interesting
identities. Direct proof was sometimes found after the probability
distribution, often using tools from Hall–Littlewood functions.
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Random matrix

Work with Cheong

Overview

Fix a monic polynomial P (t) in Zp[t].

Let X ∈ Matn(Zp) be uniformly random.

Question. How does cok(P (X)) (as an abelian p-group) distribute?

Conjecture (Cheong, H. ’21). Proposed a distribution, in which the
formula is sensitive to how P (t) is factorized mod p.

It turns out that one has to remember an additional structure on
cok(P (X))! (Cheong, Lee, Kaplan, etc.)

Non-DVR comes into play

Let R = Zp[t]/P (t). Then there is an R-module structure on
cok(P (X)).

t acts on cok(P (X)) by sending v mod im(P (X)) to
Xv mod im(P (X)).
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Random matrix

Work with Cheong

Theorem (Cheong, Yu ’23)

For any finite R-module M , the probability that cok(P (X)) ∼=R M , as
n → ∞, approaches 1/|AutR M | ·

∏l
j=1(p

−dj ; p−dj )∞ if M satisfies a
“b0 = b1” condition, and zero otherwise, where

l, d1, . . . , dl are read from the factorization data of P (t) mod p.

“b0 = b1” condition comes from minimal resolutions and Betti
numbers of localizations of M .

Consequence

The sum of 1/|AutR M | over finite R-modules satisfying b0 = b1 condition
is
∏l

j=1(p
−dj ; p−dj )−1

∞ . A non-partition-sum result!
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Random matrix

Work with Cheong

Theorem (Cheong, H.)

A similar but different formula holds for an analogous model, in which the
random matrix X has a fixed residue class mod p. Moreover, our formula
is exact for each n (before taking limit).

The proof relies on understanding a more straightforward model that
produces an R-module. Namely, the cokernel of an R-matrix.
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Random matrix

Work with Cheong

Theorem (Cheong, H.)

Let R be any complete Noetherian local ring with residue field Fq. Let M
be a finite R-module; we have well-defined integers b0(M), b1(M) called
the Betti numbers of M . Let n, u ≥ 0 and let X be a uniformly random
n× (n+ u) matrix over R. Then the probability that cokR(X) ∼=R M is
1/|AutR M | ·

∏n+u
i=u+b0−b1+1(1− q−i)

∏n
i=n−b0+1(1− q−i) if

n ≥ b0 ≥ b1 − u, and zero otherwise.

Setting total probability = 1 and some elementary work, one can obtain a
non-partition-sum analog of Euler’s identity:

Corollary

When summed over all finite R-modules M , we have∑
M

tℓ(M)

|AutR M |(tq
−1; q−1)−1

b0(M)−b1(M) = (tq−1; q−1)−1
∞ , where ℓ(M) is

defined by qℓM = |M |.
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Counting submodules

Lattice zeta function

Work of Solomon ’77

Consider L = Zd, visualized as a full lattice in Qd (or Rd).

A sublattice M ⊆ L is a Z-submodule of L of finite index. Write the
index as (L : M).

Question. How many sublattices of given index are there?

To study this (and its asymptotic), Solomon defined a generating
function ζL(s) =

∑
M (L : M)−s.

He found that ζL(s) = ζ(s)ζ(s− 1) . . . ζ(s− d+ 1), where ζ(s) is the
Riemann zeta function.

Relation to partitions

For each prime p, the p-part of Zd/M is a finite abelian p-group, which
has a type. One can express ζL(s) in terms of partition sums by grouping
together all M ’s that have the same p-type.
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Counting submodules

Work with Jiang

An analogous setting

Let k = Fq be a finite field and R = R2,n = k[[X,Y ]]/(Y 2 −Xn),
n ≥ 2. (If both n = 2m, q are even, replace by Y (Y −Xm).)

What is ZRd(t) :=
∑

M⊆Rd t[R
d:M ], summed over R-submodules M

with [Rd : M ] := dimk R
d/M < ∞?

Previous work

R is not a DVR, so M can no longer be classified by partitions.

Nevertheless, such functions (for R in more generality) are known to
have nice general properties. (Bushnell, Reiner ’80s)

When d = 1, explicit formulas are expected to have knot-theoretic
interpretation. (Oblomkov, Rasmussen, Shende ’18)

When d = 1 and R = k[[X,Y ]]/(Y m −Xn) with m,n coprime, we
get generalized q, t-Catalan. (Gorsky, Mazin ’13)
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Counting submodules

Our formulas

Theorem (H., Jiang)

For R = R2,2m+1, m ≥ 1, then (t; q)dZRd(t) is the q, t-polynomial Cm,d :=∑
µ⊆(md)

g
(md)

µ,(md)−µ
(q) (qdt2)|µ|.

For R = R2,2m, m ≥ 1, then (t; q)2dZRd(t) is the q, t-polynomial Nm,d :=

∑
λ,µ,ν⊆(md)

g
(md)

λ,(md)−λ
(q) gλµ,ν(q) t

|λ|(qdt)|λ|−|µ|(t; q)2d−λ′
m

(q−1; q−1)λ′
m

(q−1; q−1)µ′
m

.

Remark

One can make both formulas explicit by rewriting g
(md)

λ,(md)−λ
and

∑
ν g

λ
µ,ν .
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Counting submodules

Tables

Case of Y 2 = X3:

d C1,d(t, q)

0 1
1 1 + qt2

2 1 + (q3 + q2)t2 + q4t4

3 1 + (q5 + q4 + q3)t2 + (q8 + q7 + q6)t4 + q9t6

4 1 + (q7 + q6 + q5 + q4)t2 + (q12 + q11 + 2q10 + q9 + q8)t4 + (q15 +
q14 + q13 + q12)t6 + q16t8

Table: Cm,d(t, q) with m = 1
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Counting submodules

Tables

Case of Y 2 = X2:

d N1,d(−t, q)

0 1
1 1 + t+ qt2

2 1 + (q + 1)t+ (q3 + q2 + q)t2 + (q3 + q2)t3 + q4t4

3 1 + (q2 + q + 1)t+ (q5 + q4 + 2q3 + q2 + q)t2 + (q6 + 2q5 + 2q4 +
2q3)t3 + (q8 + q7 + 2q6 + q5 + q4)t4 + (q8 + q7 + q6)t5 + q9t6

4 1+(q3+q2+q+1)t+(q7+q6+2q5+2q4+2q3+q2+q)t2+(q9+
2q8+3q7+4q6+3q5+2q4+q3)t3+(q12+q11+3q10+3q9+4q8+
3q7+3q6+q5)t4+(q13+2q12+3q11+4q10+3q9+2q8+q7)t5+(q15+
q14+2q13+2q12+2q11+q10+q9)t6+(q15+q14+q13+q12)t7+q16t8

Table: Nm,d(−t, q) with m = 1
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Counting submodules

Combinatorial properties

Functional equation

A general theorem we prove implies that if F (t, q) = Cm,d or Nm,d, then

F (q−dt−1, q) = (qdt2)−dmF (t, q).

Open problem

Give a direct proof of the above for Nm,d. Open for m ≥ 2.

Positivity

Cm,d(±t, q) ∈ N[t, q] is clear from the formula. We expect that
Nm,d(−t, q) ∈ N[t, q] and there is a nontrivial proof when m = 1.

Open problem

Prove or disprove: Nm,d(−t, q) ∈ N[t, q] for m ≥ 2. How about
unimodality?
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Thank you for listening!



Counting submodules

One more table

Case of Y 2 = X6 (you can figure out the whole d = 3 by functional equ):

d N3,d(−t, q)

0 1
1 1 + t+ qt2 + qt3 + q2t4 + q2t5 + q3t6

2 1+ (q+1)t+(q3+ q2+ q)t2+(q4+2q3+ q2)t3+(q6+ q5+2q4+
q3)t4 + (q7 + 2q6 + 2q5 + q4)t5 + (q9 + q8 + 2q7 + 2q6 + q5)t6 +
(q9 + 2q8 + 2q7 + q6)t7 + (q10 + q9 + 2q8 + q7)t8 + (q10 + 2q9 +
q8)t9 + (q11 + q10 + q9)t10 + (q11 + q10)t11 + q12t12

3 1+(q2+q+1)t+(q5+q4+2q3+q2+q)t2+(q7+2q6+3q5+2q4+
2q3)t3 + (q10 + q9 + 3q8 + 3q7 + 4q6 + 2q5 + q4)t4 + (q12 + 2q11 +
4q10 +4q9 +5q8 +3q7 +2q6)t5 +(q15 + q14 +3q13 +4q12 +6q11 +
5q10+5q9+2q8+ q7)t6+(q16+3q15+5q14+7q13+6q12+6q11+
3q10 + 2q9)t7 + (q18 + 2q17 + 5q16 + 6q15 + 8q14 + 6q13 + 5q12 +
2q11 + q10)t8 + (q19 + 4q18 + 6q17 + 8q16 + 7q15 + 6q14 + 3q13 +
2q12)t9 + (q21 + 2q20 + 5q19 + 6q18 + 8q17 + 6q16 + 5q15 + 2q14 +
q13)t10+(q22+3q21+5q20+7q19+6q18+6q17+3q16+2q15)t11+
(q24+q23+3q22+4q21+6q20+5q19+5q18+2q17+q16)t12+(q24+
2q23 + 4q22 + 4q21 + 5q20 + 3q19 + 2q18)t13 + (q25 + q24 + 3q23 +
3q22+4q21+2q20+ q19)t14+(q25+2q24+3q23+2q22+2q21)t15+
(q26 + q25 + 2q24 + q23 + q22)t16 + (q26 + q25 + q24)t17 + q27t18

Table: Nm,d(−t, q) with m = 3
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