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Introduction

Partitions

Partitions index many things.

Representation theory: irreducible representations of .5,.

Symmetric functions: elements of many bases.

Algebraic geometry: Schubert varieties in a Grassmannian.

Question
Other interesting models for partitions?

Yes — let’s look at the one used to define the Hall polynomial.
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Types of abelian p-groups

@ By the classification theorem, any finite abelian p-group M is
uniquely of the form

M=Z/pMNL& - SL/pNTL, A\ >---> N > 0.

e We say the partition A\ := (A1,..., ;) is the type of M.
@ For abelian p-groups M C N, we define the cotype of M in N as the
type of M/N.
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Introduction

Hall polynomials

Definition
@ Given any partitions A, u, v
o Define g;},l,(p) to be the number of subgroups of a fixed type-A
p-group of type i and cotype v, for any prime p.

e (Hall) g/“/( ) is a polynomial in p, called the Hall polynomial;
gmu( ) = g,w( ) gf;,l,(()) is the Littlewood—Richardson coefficient.

Remarks
@ The Hall algebra has a basis indexed by partitions and structure
constants given by gﬁ,y(t).
@ The Hall-Littlewood (symmetric) function interpolates many famous
symmetric functions. The structure constants are essentially

g, ().
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Introduction

Automorphisms

Definition
@ Let a)(p) be the number of automorphisms of an abelian p-group of
type A.

@ Important formula:

12 _ _
ax(p) = p== N [0 ae,

i1’
i>0
where X/ is the i-th column of A, and
(@ @)n=01-q)(1-¢)...(1=q").
@ In particular, a)(p) is a polynomial in p.

@ a)(t) plays a role in Hall-Littlewood functions.

Takeaway

Some functions of partitions have algebraic interpretations like this.
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Introduction

More explicit formulas

° g/’)yy(t) has an explicit (though very complicated) formula, and the
form involves g-hypergeometric functions.

o Easier special case: if A = (m?) (a box), v = (m?) — p, then

() = el (=11,
v ap(t) (5 g

@ Summations are not too bad:

A Z /()\/ /) )\,—MI 1
S 0= oA [ Pt

/ /
i>1 Ai M

where [}1] = (¢;@)n/((¢; Q)1(a; O)n—r)- (Warnaar '13)
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Introduction

Summation identities

Interpreting partitions as types can lead to summation identities.

A toy example

d Lt 42
© Xy ki (0) -t Gl = g

/
1

@ Proof. Suffices to prove the case t = p is a prime.

@ RHS counts homomorphisms f : (Z/p™)% — (Z/p™). (They can be

given by d x d matrices over Z/p™.)
@ LHS counts it in a different way.
@ Let M = im(f) and p be the type of M.

e Thereare ), g/(ﬁ,d)(p) choices of M.

o If M is fixed, then f is determined by a surjection (Z/p™)% — M.

, dul . (@ tpYa
@ By Nakayama's lemma, there are p®#l . o Tp T many.
p~Lip )d,ufl
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Introduction

In the absence of partitions

A recipe to generalize
@ Recall: partition ~ finite abelian p-group = finite Z,-module.
@ Same story if Zj, is replaced by any DVR.

@ Replace Z, by a non-DVR R ~+ Replace partitions by finite
R-modules.

Question
Does this generalization lead to interesting identities?

Answer

@ Sometimes we get identities with summations over R-modules even
when they are impossible to index explicitly. (w/ Cheong)

@ In special cases, we can, which lead to partition identities, though
more convoluted. (w/ Jiang)
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Random matrix

Random partitions from random matrices

The cokernel of Z,-matrix gives a Z,-module.
Thus, a matrix gives a partition by taking the type of the cokernel.
When the matrix is random, we get a random partition.

There are many random matrix models: uniformly random matrix,
uniformly random symmetric matrix, random 0, 1-matrix (Wood),
products of random matrices (van Peski), polynomials of random

matrices (Cheong, H.), etc.

@ They each produce a random partition with interesting distribution.

@ Some have graph-theoretic motivation: symmetric 0, 1-matrix ~»
random graph, cokernel ~» sandpile group.

The fact that “probabilities sum up to 1" often produces interesting
identities. Direct proof was sometimes found after the probability
distribution, often using tools from Hall-Littlewood functions.
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Work with Cheong

Overview
e Fix a monic polynomial P(t) in Z,][t].
o Let X € Mat,(Zy) be uniformly random.
@ Question. How does cok(P (X)) (as an abelian p-group) distribute?

@ Conjecture (Cheong, H. '21). Proposed a distribution, in which the
formula is sensitive to how P(t) is factorized mod p.

@ It turns out that one has to remember an additional structure on
cok(P(X))! (Cheong, Lee, Kaplan, etc.)

Non-DVR comes into play
o Let R =7Z,[t]/P(t). Then there is an R-module structure on
cok(P(X)).
@ ¢ acts on cok(P(X)) by sending v mod im(P (X)) to
Xv mod im(P(X)).
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Work with Cheong

Theorem (Cheong, Yu '23)

For any finite R-module M, the probability that cok(P (X)) =r M, as
n — oo, approaches 1/|Autg M| - ]_[ézl(p*di;}fdf)OO if M satisfies a
‘bo = b1” condition, and zero otherwise, where

@ [,dy,...,d; are read from the factorization data of P(t) mod p.

@ ‘by = b1" condition comes from minimal resolutions and Betti
numbers of localizations of M .

Consequence

The sum of 1/|Autr M| over finite R-modules satisfying by = b1 condition
is Hé.:l(p_di;p_di)gol. A non-partition-sum result!
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Work with Cheong

Theorem (Cheong, H.)

A similar but different formula holds for an analogous model, in which the
random matrix X has a fixed residue class mod p. Moreover, our formula
is exact for each n (before taking limit).

The proof relies on understanding a more straightforward model that
produces an R-module. Namely, the cokernel of an R-matrix.
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Work with Cheong

Theorem (Cheong, H.)

Let R be any complete Noetherian local ring with residue field F,. Let M
be a finite R-module; we have well-defined integers bo(M), by (M) called
the Betti numbers of M. Let n,u > 0 and let X be a uniformly random

n X (n + wu) matrix over R. Then the probability that cokR(X) >“p M is

1/|Autr M| - H?+?1L+b0—bl+1(1 q_z) Hzfn—bo-i-l(l ) if
n > by > by — u, and zero otherwise.

Setting total probability = 1 and some elementary work, one can obtain a
non-partition-sum analog of Euler’s identity:

Corollary
When su(m)med over all finite R-modules M, we have
t(i M

ZM TAutg M| (tq—qu 1)1,_01(]\4),1)1(]\/[) = (tq—l;q—l)&}’ where €(M) is
defined by ¢‘M = |M].
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Lattice zeta function

Work of Solomon '77

o Consider L = Z, visualized as a full lattice in Q% (or R?).

@ A sublattice M C L is a Z-submodule of L of finite index. Write the
index as (L : M).

@ Question. How many sublattices of given index are there?

@ To study this (and its asymptotic), Solomon defined a generating
function (r(s) = > (L : M)~%.

@ He found that (1(s) = ((s)¢(s—1)...((s —d+1), where ((s) is the
Riemann zeta function.

Relation to partitions

For each prime p, the p-part of Z¢/M is a finite abelian p-group, which
has a type. One can express (1(s) in terms of partition sums by grouping
together all M's that have the same p-type.
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Work with Jiang

An analogous setting
o Let k =T, be a finite field and R = Ra,, = k[[X,Y]]/(Y? — X"),
n > 2. (If both n = 2m, g are even, replace by Y (Y — X™).)
o What is Zpa(t) := >/ pa M) summed over R-submodules M
with [R?: M] := dimy, R?/M < 00?

Previous work

@ Ris not a DVR, so M can no longer be classified by partitions.

o Nevertheless, such functions (for R in more generality) are known to
have nice general properties. (Bushnell, Reiner '80s)

@ When d = 1, explicit formulas are expected to have knot-theoretic
interpretation. (Oblomkov, Rasmussen, Shende '18)

@ Whend=1and R =E[[X,Y]]/(Y™ — X™) with m,n coprime, we
get generalized ¢, t-Catalan. (Gorsky, Mazin '13)
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Counting submodules

Our formulas

Theorem (H., Jiang)
For R = Ry om+1, m > 1, then (t;q)qaZra(t) is the q,t-polynomial C,,, 4 :=

S @

p,C(md

For R = Room, m > 1, then (t;q)2Zpa(t) is the g, t-polynomial Ny, 4 :=

1
5 o A0 g P ) (e,
) Y N,

Remark

d
One can make both formulas explicit by rewriting ggw(lnzd)_)\ and ), gﬁ‘y.
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Tables

Case of Y2 = X3:

d Cl,d(t7 Q)

1

1+ qt?

1+ (¢* + )t + ¢*t*

1+ (@° + ¢+ )P+ (¢ + ¢ + ¢O)tt 4 ¢1F

1 + (q7 4 q6 + q5 4 q4)t2 4 (q12 + qll + 2q10 + q9 + q8)t4 4 (q15 +
q14 +q13 +q12)t6 —|—q16t8

Table: Cpy q(t, q) with m =1

_w N = O
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Tables

Case of Y2 = X2

d Nl,d(_t7Q)

01

1| 1+t+qt?

2 | 1+ (g+Dt+(®+ ¢+ t? + (¢ + )3 + ¢*t?

3|1+ (+a+Dt+(°+¢" +2¢° + ¢ + ) + (¢° +2¢° + 2¢* +
2¢°)8° +(¢* + ¢" +2¢° + ¢ + ¢t + (¢ + ¢7 + ¢O)° + °1°

4 [ 1+H(@PH+P+q+Dt+ (" +¢5+2¢° +2¢* +2¢° + P+ )t? + (¢° +
2q8+3q7+4q6+3q5+2q4+q3)t3+(q12+q11 +3q10+3q9+4q8+
3¢7+3¢5+°)t* + (g3 +2¢" 43¢ " +4¢"° +3¢°+2¢* +¢" )P+ (¢ +
q14+2q13+2q12+2q11+q10+q9)t6+(q15+q14+q13+q12)t7+q16t8

Table: Ny, a(—t,q) with m =1
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Counting submodules

Combinatorial properties

Functional equation
A general theorem we prove implies that if F'(t,q) = Cp, q or Ny, 4, then

F(g %, q) = (¢"?) "™ F(t,q).

Open problem
Give a direct proof of the above for N, 4. Open for m > 2.

Positivity
Cm.a(£t, q) € N[t, g] is clear from the formula. We expect that
Npm.a(—t,q) € N[t,q] and there is a nontrivial proof when m = 1.

Open problem

Prove or disprove: N, 4(—t,q) € N[t,q] for m > 2. How about
unimodality?
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Counting submodules

One more table

Case of Y2 = X% (you can figure out the whole d = 3 by functional equ):

d N3,d(_t7q)

01

1 ].+t+qt2+qt3+q2t4+q2t5+q3t6

2 [ 1+ (q+Dt+ (P +P+)t? + (¢* +2¢3 + )2 + (¢C + ¢® +2¢* +
PR+ (0" +2¢° +2¢° + ¢ + (0 + ¢ + 207 +2¢° + ¢°)1° +
(0" +2¢° + 297 + ¢)t" + (¢ + ¢ + 2¢° + ¢")t° + (4" + 2¢° +
q8)t9 + (qll +q10 _|_q9)t10 + (qll +q10)t11 +q12t12

3| 1+ (P +q+Dt+ (P +¢* +2¢° + P + )t + (" +2¢° +3¢° +2¢* +
2q3)t3+(qlo—i-qg+3q8+3q7+4q6+2q5+q4)t4+(q12+2q11+
4q10+4q9+5q8+3(]7+2q6)t5+(q15+q14+3q13+4q12+6q11+
5q10+5q9+2q8+q7)t6+(q16+3q15+5q14+7q13+6q12+6q11+
3q10+2q9)t7+(q18+2q17+5q16+6q15+8q14+6q13+5q12+
2q11 +q10)t8+(qlg+4q18—|—6q17+8q16+7q15+6q14+3q13+
2q12)t9+(q21+2q20+5q19+6q18+8q17+6q16+5q15+2q14+
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