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Main problems

Problem 1

Let f1, . . . , fr ∈ Fq[t1, . . . , tm] be polynomials in m variables over the
finite field Fq. Given n, how many m-tuples A = (A1, . . . , Am) of
mutually commuting n× n matrices satisfy f1(A) = · · · = fr(A) = 0?
How does the number grow with n?

Problem 1’

What if we impose additional conditions to some or all of the matrices,
such as nilpotency, invertibility, or a factorization statistics of the
characteristic polynomial?

Fact: we know a lot, not only special cases, but families of examples.
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Examples of Problem 1

1 One variable, no polynomial condition. Then we are just counting
n× n matrices. There are qn

2
of them.

2 Two variables, no polynomial condition. Then we are counting pairs
of commuting matrices. We have (Feit–Fine ’60)

∞∑
n=0

|{A,B ∈ Matn(Fq) : AB = BA}|
|GLn(Fq)|

xn =
∏

i≥1,j≥0
(1− q1−jxi)−1

3 One variable, one polynomial f . Then the number of n× n matrices

A satisfying f(A) = 0 is of the order O(q
(1− 1

deg f
)n2

). (Stong ’88)
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Examples of Problem 1’

1 The number of n× n nilpotent matrices is qn
2−n. (Fine–Herstein ’58)

2 The number of pairs of commuting nilpotent matrices is given by
(Fulman–Guralnick ’18)

∞∑
n=0

|{A,B ∈ Nilpn(Fq) : AB = BA}|
|GLn(Fq)|

xn =
∏

i≥1,j≥2
(1− q1−jxi)−1

3 Fix an irreducible polynomial P (t) ∈ Fq[t] of degree d. Then the
number of dn× dn matrices whose characteristic polynomial is a
power of P (t) is

qd(n
2−n)

|GLn(Fqd)|
|GLn(Fq)|,

using the cycle index method of Kung and Stong.
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Questions to answer

At this point, there are several natural questions to ask

1 What are known so far?

2 Is there any pattern?

3 What open cases seem interesting?

We will discuss them in the talk.
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A generating function

The pattern is best understood using the following generating function.
Let’s introduce the notation.

Given polynomials f1, . . . , fr over Fq in m variables. Consider the ring
R = Fq[t1, . . . , tm]/(f1, . . . , fr). Denote

ẐR(x) :=

∞∑
n=0

|{(A1, . . . , Am) : Ai ∈ Matn(Fq), [Ai, Aj ] = 0, fs(A) = 0}|
|GLn(Fq)|

xn

(This notation implicit assumes that ẐR(x) depends only on the ring R,
not on the full data f1, . . . , fr. We will explain why this is true.)
Note that the numerator in the coefficient is the answer to Problem 1.
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The ring R should be viewed geometrically

We will consider the affine variety X = SpecR, namely, the variety cut
out by the equations. We can talk about its dimension, smoothness and
singularities.

Topologically, they can be visualized by pretending the polynomials were
over C, and thinking of X as

{(t1, . . . , tm) ∈ Cm : f1(t) = · · · = fr(t) = 0}

The dimension of X is its complex dimension. The smoothness and
singularities can be visualized likewise, barring some bad cases in low
characteristics.
We denote ẐX(x) := ẐR(x).
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Problem 1 in Ẑ notation: Examples

We restate some aforementioned examples in terms of this notation.

1 One variable, no polynomial. The ring is R = Fq[t], and the variety is
a line X = A1. We have

ẐR(x) =

∞∑
n=0

|Matn(Fq)|
|GLn(Fq)|

xn =

∞∏
i=0

1

1− q−ix
.

2 Two variables, no polynomial. The ring is R = Fq[u, v], and the
variety is a plane X = A2. The result counting pairs of commuting
matrices read

ẐR(x) =

∞∑
n=0

|{A,B ∈ Matn(Fq) : AB = BA}|
|GLn(Fq)|

xn =
∏
i≥1
j≥0

1

1− q1−jxi

8 / 23



Known cases of Problem 1

It turns out that the knowledge about a line and a plane generalizes to all
smooth curves and smooth surfaces.

Proposition

For any variety X over Fq, let ZX(x) be its Hasse–Weil zeta function. We

have ZAn(x) =
1

1− qnx
for example. Then

1 If X is a smooth curve, then

ẐX(x) =
∞∏
i=1

ZX(q
−ix);

2 If X is a smooth surface, then

ẐX(x) =
∏
i,j≥1

ZX(q
−jxi).
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A new case for Problem 1

Our main result deals with the singular curve {uv = 0}.

Theorem 1 (H., 2021+)

ẐFq [u,v]/(uv)(x) =

∞∑
n=0

|{A,B ∈ Matn(Fq) : AB = BA = 0}|
|GLn(Fq)|

xn

=
(
(1− x)(1− q−1x)(1− q−2x) . . .

)−2
Hq(x),

where Hq(x) is the entire function

Hq(x) =

∞∑
k=0

q−k
2
x2k

(1− q−1) . . . (1− q−k)
(1− q−k−1x)(1− q−k−2x) . . .

In particular, ẐFq [u,v]/(uv)(x) has a meromorphic continuation to all of C.
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Artinian modules: Towards Problem 1’

We answer Problem 1’ as far as we know, using a related generating
function, but about weighted counting of Artinian modules.

Let R be a finitely generated Fq-algebra and P be a maximal ideal.
An Artinian module over the local ring RP is an RP module that is a
finite-dimensional vector space over Fq. (For example, R/P ⊕R/P 3, but
not RP itself; also note that there are Artinian modules not of a similar
form if R is not Dedekind.)

An Artinian module over R is an R module that is a finite-dimensional
vector space over Fq. It can always be uniquely written as ⊕PMP where
P ranges over a finite collection of maximal ideals of R, and MP is an
Artinian RP module.
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Module counting generating function

Let S be R or RP above. (Namely, let S be a finitely generated
Fq-algebra or its localization at a maximal ideal.) Define

ẐS(x) :=
∑
M

1

|AutM |
xdimFq M

where M ranges over all Artinian modules of S.

If S = R = Fq[t1, . . . , tm]/(f1, . . . , fr), then this definition of ẐR(x)
agrees with the previous one using matrix counting.

Sketch of proof: to give an R-module structure to Fqn, we specify how
t1, . . . , tm act as matrices A1, . . . , Am. They must commute and satisfy
the polynomials. The ambiguity comes from simultaneous conjugation by
GLn(Fq), and the proof is finished by the orbit-stabilizer theorem.
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Problem 1’ in Ẑ notation: Examples

1 Let R = Fq[t], P = (t), S = RP . Then

ẐS(x) =

∞∑
n=0

|Nilpn(Fq)|
|GLn(Fq)|

xn

because an Artinian R-module is also an RP module if and only if t
acts nilpotently.

2 Let R = Fq[t], P = (P (t)) where P (t) is an irreducible polynomial.
Then

ẐRP
(x) =

∞∑
n=0

|{A ∈ Matn(Fq) : charpoly(A) is a power of P (t)}|
|GLn(Fq)|

xn
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Known cases of Problem 1’

If an instance of Problem 1’ can be converted to a question of ẐRP
(x),

then here is what we know:

1 ẐRP
(x) = Ẑ

R̂P
(x), because Artinian RP -modules and Artinian

R̂P -modules are the same thing;

2 ẐFq [[t]](x) =
∏∞
i=1

1

1− q−ix
; (Fine–Herstein ’58)

3 ẐFq [[u,v]](x) =
∏
i,j≥1

1

1− q−jxi
. (Fulman–Guralnick ’18)

This solves the case where RP is the local ring of a smooth closed point
on a curve or a surface, because the completion of RP will be of the form
Fqd [[t]] or Fqd [[u, v]] by Cohen’s structure theorem.
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A new case for Problem 1’

Theorem 1’ (H., 2021+)

ẐFq [[u,v]]/(uv)(x) =

∞∑
n=0

|{A,B ∈ Nilpn(Fq) : AB = BA = 0}|
|GLn(Fq)|

xn

=
(
(1− q−1x)(1− q−2x) . . .

)−2
Hq(x),

where Hq(x) is the entire function

Hq(x) =

∞∑
k=0

q−k
2
x2k

(1− q−1) . . . (1− q−k)
(1− q−k−1x)(1− q−k−2x) . . .

We remark that Laubenbacher–Sturmfels ’95 has classified Artinian
k[u, v]/(uv) modules for a field k.
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Idea of proof of Theorem 1

∞∑
n=0

|{A,B ∈ Matn(Fq) : AB = BA = 0}|
|GLn(Fq)|

xn

=
(
(1− x)(1− q−1x)(1− q−2x) . . .

)−2
Hq(x)

Count such pairs of matrices by fixing the rank of A first. The
number of B that mutually annihilate A only depends on rkA.

The LHS will be an infinite sum (denoting t = q−1)∑
n

∑
`(λ)≤n

t|λ|−σ1(λ)
2
xn

where λ ranges over all partitions, |λ| is the size, `(λ) is the length,
and σ1(λ) is the sidelength of (the first) Durfee square (the largest
square that fits inside the Young diagram of λ).

16 / 23



Durfee squares

This is what Durfee squares look like:

In this example, σ1(λ) = 4, σ2(λ) = 2, etc.
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Idea of proof of Theorem 1

∞∑
n=0

|{A,B ∈ Matn(Fq) : AB = BA = 0}|
|GLn(Fq)|

xn

=
(
(1− x)(1− q−1x)(1− q−2x) . . .

)−2
Hq(x)

Rewrite the sum by fixing σ1(λ), σ2(λ) first. Here, σ2(λ) (called the
second Durfee square) is the largest square that fits below the first
Durfee square.

This turns out to give the factorization. The form of Hq(x) is

∞∑
n=0

tn
2
xn · (bounded),

giving the convergence for all x.
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Proof of Theorem 1’

ẐFq [[u,v]]/(uv)(x) =

∞∑
n=0

|{A,B ∈ Nilpn(Fq) : AB = BA = 0}|
|GLn(Fq)|

xn

=
(
(1− q−1x)(1− q−2x) . . .

)−2
Hq(x),

1 It turns out that a proof with direct counting works, but is much
harder than the case of Theorem 1.

2 Theorem 1’ is about a weighted count of Artinian modules over
Fq[[u, v]]/(uv). It seems impossible to use the
Laubenbacher–Sturmfels classification because of the complexity, and
we need to consider the automorphism group, too.

3 The simplest proof known to me is to apply Theorem 1, thanks to the
nice behaviors of the Ẑ generating functions.
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Euler product

We have
ẐR(x) =

∏
P

ẐRP
(x),

where P ranges over all maximal ideals of R. This is because an Artinian
R-module is uniquely decomposable into Artinian RP -modules, and
different P ’s don’t interact when taking automorphism groups.

Now apply this to both X = SpecFq[u, v]/(uv) and X minus the origin
(which is just two copies of A1 minus the origin), we get

ẐFq [[u,v]]/(uv)(x) = ẐFq [u,v]/(uv)(x)/ẐA1−0(x)
2

This allows the computation of Theorem 1’ from the right-hand side
(which is known due to Theorem 1).
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Open question

The main result has an equivalent restatement

Ẑ{uv=0}(x)

Ẑ(two lines)(x)
= Hq(x) is an entire function.

Notice that resolving the singular point of {uv = 0} results in two lines.

Conjecture (H.)

Let X be any curve over Fq with only planar singularities, and assume X̃

is a resolution of singularity of X. Then
ẐX(x)

Ẑ
X̃
(x)

is entire in x.

We remark that the question only depends on the type of the singularity.
The main result implies the conjecture holds for nodes.
In particular, the conjecture predicts an asymptotics about
|{AB = BA,B2 = A3}|:

Ẑ{v2=u3} =
(
(1− x)(1− q−1x)(1− q−2x) . . .

)−1 · (entire)
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Final remarks

The coefficient of ẐX(x) is actually the point-count of the stack of
finite-length coherent sheaves over X.

I don’t know a geometric proof of the main result.

The form of Hq(x) is too complicated so that it is not likely to be a
consequence of general arguments in algebraic geometry.

(Very recent observation) The case where X is 0-dim (not necessarily
reduced) is surprisingly interesting. The ẐX(x) seems to be entire
and related to “partial theta functions”. Entireness is known for
X = SpecFq[t]/f(t) (using the asymptotic given by Stong ’88) but
there could be other examples like {AB = BA,A2 = B3 = 0}.
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Thank you!


