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Background

Given a field F and n ≥ 0, define the n-th commuting variety over F as

K1,n(F) := {(A,B) ∈ Matn(F)×Matn(F) : AB = BA}.

(The meaning of the notation will be clear later.)

What’s known:

When F = C, the commuting variety K1,n(C) is a complex algebraic
variety. Motzkin and Taussky (1955) and Gerstenhaber (1961)
showed that K1,n(C) is irreducible.
When F = Fq, the finite field of q elements, the set K1,n(Fq) is a
finite set. Feit and Fine (1960) gave its cardinality by the formula:

∞∑
n=0

|K1,n(Fq)|
(qn − 1)(qn − q) . . . (qn − qn−1)

xn =
∏
i,j≥1

1

1− xiq2−j
. (1)
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Background

We now consider a quantum deformation of the commuting variety. Let ζ
be a nonzero element of F, define the n-th ζ-commuting variety as

Kζ,n(F) := {(A,B) ∈ Matn(F)×Matn(F) : AB = ζBA}.

If ζ = 1, then it simply becomes the commuting variety, hence the
notation K1,n for the commuting variety.

Efforts have been spent to extend the work of Motzkin, Taussky and
Gerstenhaber to the ζ-commuting variety:

Chen and Wang (2018) described the irreducible components of the
anti-commuting variety K−1,n(C). There are more than one, unlike
the ζ = 1 case.

Chen and Lu (2019) further extended the above result to general ζ.
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Main result

We give a direct generalization of Feit–Fine’s formula.

Main Theorem (H., 2021).

Let ζ be a nonzero element of Fq, and let m be the smallest positive
integer such that ζm = 1. Then

∞∑
n=0

|Kζ,n(Fq)|
(qn − 1)(qn − q) . . . (qn − qn−1)

xn =

∞∏
i=1

Fm(xi; q),

where

Fm(x; q) :=
1− xm

(1− x)(1− xmq)
· 1

(1− x)(1− xq−1)(1− xq−2) . . .
.

When ζ = 1, we have m = 1, so F1(x
i; q) =

∏
j≥1

1

1− xiq2−j
and we

recover Feit–Fine.
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Variety of modules

The commuting variety K1,n(F) parametrizes and classifies
finite-F-dimensional modules over the polynomial ring F[X,Y ]. So
K1,n(F) is also called the variety of modules over F[X,Y ]. To specify an
F[X,Y ]-module with underlying space Fn, it suffices to specify the
x-action A : Fn → Fn and the y-action B : Fn → Fn under the constraint
AB = BA. This constraint is because x and y commmute in F[X,Y ].

Similarly, the ζ-commuting variety parametrizes finite-F-dimensional
modules over the associative algebra F{X,Y }/(XY − ζY X). This
algebra is called the quantum plane, and is considered as a quantum
deformation of F[X,Y ].
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Remarks on Main Theorem

∞∑
n=0

|Kζ,n(Fq)|
(qn − 1)(qn − q) . . . (qn − qn−1)

xn =

∞∏
i=1

Fm(xi; q),

Fm(x; q) :=
1− xm

(1− x)(1− xmq)
· 1

(1− x)(1− xq−1)(1− xq−2) . . .
.

The cardinality of Kζ,n(Fq) depends only on the order of ζ as a root
of unity of Fq. This is expected.

The denominator (qn − 1)(qn − q) . . . (qn − qn−1) is precisely the size
of GLn(Fq). This is the natural denominator in this type of generating
function. In fact, the coefficient |Kζ,n(Fq)|/|GLn(Fq)| is the number
of n-dimensional modules over the quantum plane up to isomorphism,
each measured with a weight of 1/(size of automorphism group).

Bavula (1997) classified simple modules over the quantum plane;
Main Theorem should encode some statistical information about this
classification.
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Further breakdown

We now state a refinement of Main Theorem. Let

Uζ,n(Fq) := {(A,B) ∈ GLn(Fq)×Matn(Fq) : AB = ζBA},

and

Nζ,n(Fq) := {(A,B) ∈ Nilpn(Fq)×Matn(Fq) : AB = ζBA}.

It turns out that the varieties Uζ,n(Fq) and Nζ,n(Fq) are building blocks of
Kζ,n(Fq), in the sense that

∞∑
n=0

|Kζ,n(Fq)|
|GLn(Fq)|

xn =

( ∞∑
n=0

|Uζ,n(Fq)|
|GLn(Fq)|

xn

)( ∞∑
n=0

|Nζ,n(Fq)|
|GLn(Fq)|

xn

)

Recall that the left-hand side is the content of Main Theorem.
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Further breakdown

Refined Theorem (H., 2021)

Let m be the order of ζ. Then

∞∑
n=0

|Uζ,n(Fq)|
|GLn(Fq)|

xn =

∞∏
i=1

Gm(xi; q),

where

Gm(x; q) :=
1− xm

(1− x)(1− xmq)
.

∞∑
n=0

|Nζ,n(Fq)|
|GLn(Fq)|

xn =

∞∏
i=1

H(xi; q),

where

H(x; q) :=
1

(1− x)(1− xq−1)(1− xq−2) . . .
.
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Remarks on Refined Theorem

Refined Theorem can be interpreted as that in the formula

Fm(x; q) :=
1− xm

(1− x)(1− xmq)
· 1

(1− x)(1− xq−1)(1− xq−2) . . .

related to the count of {(A,B) : AB = ζBA}, the factor
1− xm

(1− x)(1− xmq)
is the contribution of invertible A, while the factor

1

(1− x)(1− xq−1)(1− xq−2) . . .
is the contribution of nilpotent A.

Note that the latter does not depend on m, so |Nζ,n(Fq)| does not depend
on ζ.
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Ideas of proof: decomposition

Given A,B ∈ Matn(Fq) such that AB = ζBA, by Fitting’s lemma,
there is a unique direct sum decomposition Fq

n = V ⊕W such that
A(V ) ⊆ V,A(W ) ⊆ W , A|V is invertible, and A|W is nilpotent.

It turns out that B must satisfy B(V ) ⊆ V,B(W ) ⊆ W . All we need
in the proof is that ζ ̸= 0.

This allows Kζ,n(Fq) to be “decomposed” into Uζ,n(Fq) (requiring
invertible A) and Nζ,n(Fq) (requiring nilpotent A), in the sense of

∞∑
n=0

|Kζ,n(Fq)|
|GLn(Fq)|

xn =

( ∞∑
n=0

|Uζ,n(Fq)|
|GLn(Fq)|

xn

)( ∞∑
n=0

|Nζ,n(Fq)|
|GLn(Fq)|

xn

)
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Ideas of proof: nilpotent part

To compute |Nζ,n(Fq)| = |{(A,B) : AB = ζBA,A nilp}|, we first fix
A and count the number of B.

The number of B only depends on the similarity class of A, so we
may assume A is in the Jordan canonical form.

The general form of B can then be determined entry-wise.

In particular, the number of B does not depend on ζ (this works even
for ζ = 0).
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Ideas of proof: invertible part

To compute |Uζ,n(Fq)| = |{(A,B) : AB = ζBA,A invertible}|, we
first fix B and count the number of A. (Opposite to the nilpotent
case!!)

Not every B contributes. In order for the number of A to be nonzero,
we must have that B is similar to ζB (by the definition of similarity).

Using the standard orbit-stabilizer argument, it suffices to count the
number of similarity classes of B such that B is similar to ζB.

This is where m, the order of ζ, matters. The similarity class
corresponds to a finite sequence (g1, g2, . . . ) of monic polynomials
over Fq such that gi divides gi+1. Requiring B to be similar to ζB is
equivalent to requiring every gi in the sequence of polynomials
associated to B to be of the following form:
td + c1t

d−m + c2t
d−2m + . . .
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Pause

Second half: Cohen–Lenstra series



A broader framework

The result can be put in a general framework which I call the
Cohen–Lenstra series. Let R be an Fq-algebra with some reasonable
finiteness assumption (e.g., Fq[X], Fq[[X,Y ]]/(XY ), or the quantum
plane). Define the Cohen–Lenstra series of R as

ẐR(x) =
∑
M/R

1

|AutM |
xdimFq M ,

where M runs over all isomorphism classes of finite-cardinality modules
over R. This framework has the advantages of:

can unify many matrix enumeration problems of very distinct flavors,
by varying R;

can easily tell new problems from old.

has local-global if R is commutative: ẐR(x) =
∏

p∈SpecmR

ẐRp(x).

(follows naturally from the definition)
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Cohen–Lenstra series: History

The concept of Cohen–Lenstra series has been considered before in various
formulations.

Cohen and Lenstra, 1984: considered the series for Dedekind domain
R, in the same formulation.

Feit and Fine, 1960: The generating function they gave for counting
commuting matrices matches the series for Fq[X,Y ].

Bryan and Morrison, 2015: reinterpreted Feit–Fine in motivic
Donaldson–Thomas theory, where they considered a generating series
for motivic classes of the stack of coherent sheaves over R, which is a
refined version of ẐR(x).
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Matrix formulation

If R = Fq[X1, . . . , Xm]/(f1, . . . , fr), consider the variety of modules over
R:

Kn(R)(Fq) = {A1, . . . , Am ∈ Matn(Fq) : [Ai, Aj ] = 0, fk(A) = 0}.

Then Kn(R) parametrizes (with some nonuniqueness) modules over R
that are n-dimensional over Fq, and

ẐR(x) =
∑
n≥0

|Kn(R)|
|GLn(Fq)|

xn.

Punctual version: If R = Fq[[X1, . . . , Xm]]/(f1, . . . , fr) where fk(0) = 0,
the variety of modules over R is

Kn(R)(Fq) = {A1, . . . , Am ∈ Nilpn(Fq) : [Ai, Aj ] = 0, fk(A) = 0}.
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Matrix enumeration interpreted as Cohen–Lenstra

By varying R, many generating series of matrix enumeration problems can
be viewed as ẐR(x):

R = Fq[[X]]: ẐR(x) is a generating series for |Nilpn(Fq)| (= qn
2−n

by Fine–Herstein 1958)

R = Fq[X,Y ]: ẐR(x) is the series counting commuting matrices
computed in Feit–Fine 1960.

R = Fq[X,Y ]/(XY ): ẐR(x) counts mutually annihilating matrices
AB = BA = 0 (computed in H., 2021).

R is the quantum plane Fq{X,Y }/(XY − ζY X): ẐR(x) is the series
in Main Theorem.

17 / 24



Behaviors of the Cohen–Lenstra series

The status of knowledge of ẐR(x) is best summarized in terms of the
algebraic geometry of R:

R noncommutative: mostly unknown, except Main Theorem.

For the below, R is commutative and X = SpecR:

X a smooth curve: ẐR(x) =
∏

j≥1 ZX(xq−j), where ZX is the
Hasse–Weil zeta.

X a smooth surface: ẐR(x) =
∏

i,j≥1 ZX(xiq−j).

The two above follow from classical formulas for R = Fq[X],Fq[X,Y ] and
local-global.

X a nodal singular curve: has an explicit formula with mysterious
combinatorics (H., 2021)

X other singular curve: has conjectural patterns (H., 2021)

Fun fact: R = Fq (a point) is not a trivial case; in fact ẐR(x) is the
Rogers–Ramanujan series! (1, 4 mod 5...)

All other cases: wide open.
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A dream

Since the combinatorial behavior of ẐR(x) depends heavily on the
algebraic geometry of R, any observation about ẐR(x) may suggest
interesting geometry of R.

In the rest of the talk, we will discuss an elementary observation about our
Refined Theorem that seems to owe a higher-level explanation. It might
inspire interesting noncommutative geometry of the quantum plane.
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A cut-and-paste

Let’s consider the following series:

ẐFq [X](x) =
∑
n≥0

|Matn(Fq)|
|GLn(Fq)|

xn

ẐFq [X,X−1](x) =
∑
n≥0

|GLn(Fq)|
|GLn(Fq)|

xn =
1

1− x

ẐFq [[X]](x) =
∑
n≥0

|Nilpn(Fq)|
|GLn(Fq)|

xn

Local-to-global =⇒ ẐFq [X](x) = ẐFq [X,X−1](x)ẐFq [[X]](x).

Essentially the cut-and-paste A1 = (A1 \ {0}) ⊔ {0}.
Since Matn(Fq) is easy to count (there are qn

2
matrices), this computes

|Nilpn(Fq)| (an alternative proof of Fine–Herstein).

20 / 24



Global-to-local

The decomposition above is essentially the same phenomenon as

∞∑
n=0

|Kζ,n(Fq)|
|GLn(Fq)|

xn =

( ∞∑
n=0

|Uζ,n(Fq)|
|GLn(Fq)|

xn

)( ∞∑
n=0

|Nζ,n(Fq)|
|GLn(Fq)|

xn

)
.

It appears that ẐFq [X,X−1](x) and ẐFq [[X]](x) are “disjoint and
independent” building blocks, just like |Uζ,n(Fq)| vs |Nζ,n(Fq)|. But the
story doesn’t end here – ẐFq [X,X−1](x) and ẐFq [[X]](x) are amazingly
interconnected!
Key: A1 \ {0} is composed of closed points, each of which “looks like” the
origin.
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Global-to-local

Recall local-to-global for R = Fq[X,X−1]:

ẐFq [X,X−1](x) =
∏
p

ẐRp(x).

Now, each Rp is smooth of dimension one, so its completion is isomorphic

to a power series ring over some finite field. Therefore, all ẐRp(x) is

essentially ẐFq [[X]](x) (though a substitution is needed), so ẐR(x) is

determined by ẐFq [[X]](x).

Moreover, because ẐR(x) is determined by ẐFq [[X]](x) alone, we can
reverse this process (“global-to-local”) and write down a formula that
recovers ẐFq [[X]](x) from ẐR(x) = 1/(1− x). (Yet another proof of
Fine–Herstein!)

This idea is due to Bryan and Morrison (2015) in a more refined language
of motivic classes. They actually did the case for R = Fq[X,Y ] (namely,
K1,n).
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How about the quantum plane?

Noncommutative Question.

Can you recover |Uζ,n(Fq)| from |Nζ,n(Fq)| (or vice versa), using the
geometry of the quantum plane?

The commutative analogue requires the notion of “localization at a
prime ideal”. Does this notion exist for the quantum plane?

Recall that |Uζ,n(Fq)| depends on ζ (or the order of ζ), while
|Nζ,n(Fq)| doesn’t. So if |Nζ,n(Fq)| recovers |Uζ,n(Fq)|, it must be
because it also takes account of some geometry of the quantum plane
that depends on ζ.
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Final takeaway

We extend a formula that counts matrix pairs AB = BA to the case
AB = ζBA where ζ is nonzero. The answer depends on the order of
ζ as a root of unity.

The count of AB = ζBA encodes statistical information about
modules over the quantum plane.

The count in question has two seemingly independent building blocks
that turn out to be interdependent in the ζ = 1 case, using
ingredients from (commutative) algebraic geometry. I hope that the
study of a possible interdependence in the case of general ζ will
inspire interesting noncommutative geometry.
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