Counting on the variety of modules over the quantum plane

Yifeng Huang

University of Michigan \rightarrow UBC Vancouver

May. 2, 2022

arXiv: 2110.15570, to appear on Algebr. Comb.

Background

Given a field \mathbb{F} and $n \geq 0$, define the *n*-th **commuting variety** over *F* as

 $K_{1,n}(\mathbb{F}) := \{ (A, B) \in \operatorname{Mat}_n(\mathbb{F}) \times \operatorname{Mat}_n(\mathbb{F}) : AB = BA \}.$

(The meaning of the notation will be clear later.)

What's known:

- When $\mathbb{F} = \mathbb{C}$, the commuting variety $K_{1,n}(\mathbb{C})$ is a complex algebraic variety. Motzkin and Taussky (1955) and Gerstenhaber (1961) showed that $K_{1,n}(\mathbb{C})$ is irreducible.
- When $\mathbb{F} = \mathbb{F}_q$, the finite field of q elements, the set $K_{1,n}(\mathbb{F}_q)$ is a finite set. Feit and Fine (1960) gave its cardinality by the formula:

$$\sum_{n=0}^{\infty} \frac{|K_{1,n}(\mathbb{F}_q)|}{(q^n-1)(q^n-q)\dots(q^n-q^{n-1})} x^n = \prod_{i,j\ge 1} \frac{1}{1-x^i q^{2-j}}.$$
 (1)

Background

We now consider a quantum deformation of the commuting variety. Let ζ be a nonzero element of \mathbb{F} , define the *n*-th ζ -commuting variety as

$$K_{\zeta,n}(\mathbb{F}) := \{ (A, B) \in \operatorname{Mat}_n(\mathbb{F}) \times \operatorname{Mat}_n(\mathbb{F}) : AB = \zeta BA \}.$$

If $\zeta = 1$, then it simply becomes the commuting variety, hence the notation $K_{1,n}$ for the commuting variety.

Efforts have been spent to extend the work of Motzkin, Taussky and Gerstenhaber to the ζ -commuting variety:

- Chen and Wang (2018) described the irreducible components of the anti-commuting variety $K_{-1,n}(\mathbb{C})$. There are more than one, unlike the $\zeta = 1$ case.
- Chen and Lu (2019) further extended the above result to general ζ .

Main result

We give a direct generalization of Feit-Fine's formula.

Main Theorem (H., 2021).

Let ζ be a nonzero element of \mathbb{F}_q , and let m be the smallest positive integer such that $\zeta^m=1.$ Then

$$\sum_{n=0}^{\infty} \frac{|K_{\zeta,n}(\mathbb{F}_q)|}{(q^n-1)(q^n-q)\dots(q^n-q^{n-1})} x^n = \prod_{i=1}^{\infty} F_m(x^i;q),$$

where

$$F_m(x;q) := \frac{1-x^m}{(1-x)(1-x^mq)} \cdot \frac{1}{(1-x)(1-xq^{-1})(1-xq^{-2})\dots}.$$

When $\zeta = 1$, we have $m = 1$, so $F_1(x^i;q) = \prod_{j \ge 1} \frac{1}{1-x^iq^{2-j}}$ and we recover Feit-Fine.

The commuting variety $K_{1,n}(\mathbb{F})$ parametrizes and classifies finite- \mathbb{F} -dimensional modules over the polynomial ring $\mathbb{F}[X,Y]$. So $K_{1,n}(\mathbb{F})$ is also called the **variety of modules** over $\mathbb{F}[X,Y]$. To specify an $\mathbb{F}[X,Y]$ -module with underlying space \mathbb{F}^n , it suffices to specify the *x*-action $A: \mathbb{F}^n \to \mathbb{F}^n$ and the *y*-action $B: \mathbb{F}^n \to \mathbb{F}^n$ under the constraint AB = BA. This constraint is because *x* and *y* commute in $\mathbb{F}[X,Y]$.

Similarly, the ζ -commuting variety parametrizes finite- \mathbb{F} -dimensional modules over the associative algebra $\mathbb{F}\{X,Y\}/(XY - \zeta YX)$. This algebra is called the **quantum plane**, and is considered as a quantum deformation of $\mathbb{F}[X,Y]$.

Remarks on Main Theorem

$$\sum_{n=0}^{\infty} \frac{|K_{\zeta,n}(\mathbb{F}_q)|}{(q^n-1)(q^n-q)\dots(q^n-q^{n-1})} x^n = \prod_{i=1}^{\infty} F_m(x^i;q),$$
$$F_m(x;q) := \frac{1-x^m}{(1-x)(1-x^mq)} \cdot \frac{1}{(1-x)(1-xq^{-1})(1-xq^{-2})\dots}.$$

- The cardinality of K_{ζ,n}(F_q) depends only on the order of ζ as a root of unity of F_q. This is expected.
- The denominator (qⁿ 1)(qⁿ q)...(qⁿ qⁿ⁻¹) is precisely the size of GL_n(F_q). This is the natural denominator in this type of generating function. In fact, the coefficient |K_{ζ,n}(F_q)|/|GL_n(F_q)| is the number of n-dimensional modules over the quantum plane up to isomorphism, each measured with a weight of 1/(size of automorphism group).
- Bavula (1997) classified simple modules over the quantum plane; Main Theorem should encode some statistical information about this classification.

We now state a refinement of Main Theorem. Let

$$U_{\zeta,n}(\mathbb{F}_q) := \{ (A,B) \in \operatorname{GL}_n(\mathbb{F}_q) \times \operatorname{Mat}_n(\mathbb{F}_q) : AB = \zeta BA \},\$$

and

$$N_{\zeta,n}(\mathbb{F}_q) := \{ (A, B) \in \operatorname{Nilp}_n(\mathbb{F}_q) \times \operatorname{Mat}_n(\mathbb{F}_q) : AB = \zeta BA \}.$$

It turns out that the varieties $U_{\zeta,n}(\mathbb{F}_q)$ and $N_{\zeta,n}(\mathbb{F}_q)$ are building blocks of $K_{\zeta,n}(\mathbb{F}_q)$, in the sense that

$$\sum_{n=0}^{\infty} \frac{|K_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n = \left(\sum_{n=0}^{\infty} \frac{|U_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n\right) \left(\sum_{n=0}^{\infty} \frac{|N_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n\right)$$

Recall that the left-hand side is the content of Main Theorem.

Further breakdown

Refined Theorem (H., 2021) Let m be the order of ζ . Then

$$\sum_{n=0}^{\infty} \frac{|U_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n = \prod_{i=1}^{\infty} G_m(x^i;q),$$

where

$$G_m(x;q) := \frac{1 - x^m}{(1 - x)(1 - x^m q)}$$

$$\sum_{n=0}^{\infty} \frac{|N_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n = \prod_{i=1}^{\infty} H(x^i;q),$$

where

$$H(x;q) := \frac{1}{(1-x)(1-xq^{-1})(1-xq^{-2})\dots}$$

Refined Theorem can be interpreted as that in the formula

$$F_m(x;q) := \frac{1 - x^m}{(1 - x)(1 - x^m q)} \cdot \frac{1}{(1 - x)(1 - xq^{-1})(1 - xq^{-2})\dots}$$

related to the count of $\{(A, B) : AB = \zeta BA\}$, the factor $\frac{1 - x^m}{(1 - x)(1 - x^m q)}$ is the contribution of invertible A, while the factor $\frac{1}{(1 - x)(1 - xq^{-1})(1 - xq^{-2})\dots}$ is the contribution of nilpotent A.

Note that the latter does not depend on m, so $|N_{\zeta,n}(\mathbb{F}_q)|$ does not depend on ζ .

Ideas of proof: decomposition

- Given $A, B \in Mat_n(\mathbb{F}_q)$ such that $AB = \zeta BA$, by Fitting's lemma, there is a unique direct sum decomposition $\mathbb{F}_q^n = V \oplus W$ such that $A(V) \subseteq V, A(W) \subseteq W$, $A|_V$ is invertible, and $A|_W$ is nilpotent.
- It turns out that B must satisfy $B(V) \subseteq V, B(W) \subseteq W$. All we need in the proof is that $\zeta \neq 0$.
- This allows $K_{\zeta,n}(\mathbb{F}_q)$ to be "decomposed" into $U_{\zeta,n}(\mathbb{F}_q)$ (requiring invertible A) and $N_{\zeta,n}(\mathbb{F}_q)$ (requiring nilpotent A), in the sense of

$$\sum_{n=0}^{\infty} \frac{|K_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n = \left(\sum_{n=0}^{\infty} \frac{|U_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n\right) \left(\sum_{n=0}^{\infty} \frac{|N_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n\right)$$

- To compute $|N_{\zeta,n}(\mathbb{F}_q)| = |\{(A,B) : AB = \zeta BA, A \text{ nilp}\}|$, we first fix A and count the number of B.
- The number of *B* only depends on the similarity class of *A*, so we may assume *A* is in the Jordan canonical form.
- The general form of B can then be determined entry-wise.
- In particular, the number of B does not depend on ζ (this works even for ζ = 0).

Ideas of proof: invertible part

- To compute $|U_{\zeta,n}(\mathbb{F}_q)| = |\{(A,B) : AB = \zeta BA, A \text{ invertible}\}|$, we first fix B and count the number of A. (Opposite to the nilpotent case!!)
- Not every B contributes. In order for the number of A to be nonzero, we must have that B is similar to ζB (by the definition of similarity).
- Using the standard orbit-stabilizer argument, it suffices to count the number of similarity classes of B such that B is similar to ζB .
- This is where m, the order of ζ, matters. The similarity class corresponds to a finite sequence (g₁, g₂,...) of monic polynomials over F_q such that g_i divides g_{i+1}. Requiring B to be similar to ζB is equivalent to requiring every g_i in the sequence of polynomials associated to B to be of the following form: t^d + c₁t^{d-m} + c₂t^{d-2m} + ...

Second half: Cohen-Lenstra series

A broader framework

The result can be put in a general framework which I call the Cohen–Lenstra series. Let R be an \mathbb{F}_q -algebra with some reasonable finiteness assumption (e.g., $\mathbb{F}_q[X]$, $\mathbb{F}_q[[X,Y]]/(XY)$, or the quantum plane). Define the Cohen–Lenstra series of R as

$$\widehat{Z}_{R}(x) = \sum_{M/R} \frac{1}{|\operatorname{Aut} M|} x^{\dim_{\mathbb{F}_{q}} M},$$

where M runs over all isomorphism classes of finite-cardinality modules over R. This framework has the advantages of:

- can unify many matrix enumeration problems of very distinct flavors, by varying *R*;
- can easily tell new problems from old.
- has local-global if R is commutative: $\widehat{Z}_R(x) = \prod \widehat{Z}_{R_p}(x)$.

(follows naturally from the definition)

 $p \in \operatorname{Specm} R$

The concept of Cohen–Lenstra series has been considered before in various formulations.

- Cohen and Lenstra, 1984: considered the series for Dedekind domain R, in the same formulation.
- Feit and Fine, 1960: The generating function they gave for counting commuting matrices matches the series for F_q[X, Y].
- Bryan and Morrison, 2015: reinterpreted Feit–Fine in motivic Donaldson–Thomas theory, where they considered a generating series for motivic classes of the stack of coherent sheaves over R, which is a refined version of $\hat{Z}_R(x)$.

If $R = \mathbb{F}_q[X_1, \dots, X_m]/(f_1, \dots, f_r)$, consider the variety of modules over R:

$$K_n(R)(\mathbb{F}_q) = \{A_1, \dots, A_m \in \operatorname{Mat}_n(\mathbb{F}_q) : [A_i, A_j] = 0, f_k(\underline{A}) = 0\}.$$

Then $K_n(R)$ parametrizes (with some nonuniqueness) modules over R that are *n*-dimensional over \mathbb{F}_q , and

$$\widehat{Z}_R(x) = \sum_{n \ge 0} \frac{|K_n(R)|}{|\operatorname{GL}_n(\mathbb{F}_q)|} x^n.$$

Punctual version: If $R = \mathbb{F}_q[[X_1, \dots, X_m]]/(f_1, \dots, f_r)$ where $f_k(\underline{0}) = 0$, the variety of modules over R is

$$K_n(R)(\mathbb{F}_q) = \{A_1, \dots, A_m \in \operatorname{Nilp}_n(\mathbb{F}_q) : [A_i, A_j] = 0, f_k(\underline{A}) = 0\}.$$

Matrix enumeration interpreted as Cohen-Lenstra

By varying R, many generating series of matrix enumeration problems can be viewed as $\widehat{Z}_R(x)$:

- $R = \mathbb{F}_q[[X]]$: $\widehat{Z}_R(x)$ is a generating series for $|\text{Nilp}_n(\mathbb{F}_q)|$ (= q^{n^2-n} by Fine–Herstein 1958)
- $R = \mathbb{F}_q[X, Y]$: $\widehat{Z}_R(x)$ is the series counting commuting matrices computed in Feit–Fine 1960.
- $R = \mathbb{F}_q[X, Y]/(XY)$: $\widehat{Z}_R(x)$ counts mutually annihilating matrices AB = BA = 0 (computed in H., 2021).
- R is the quantum plane $\mathbb{F}_q\{X,Y\}/(XY-\zeta YX)$: $\widehat{Z}_R(x)$ is the series in Main Theorem.

Behaviors of the Cohen–Lenstra series

The status of knowledge of $\widehat{Z}_R(x)$ is best summarized in terms of the algebraic geometry of R:

 $\bullet\ R$ noncommutative: mostly unknown, except Main Theorem.

For the below, R is commutative and $X = \operatorname{Spec} R$:

- X a smooth curve: $\widehat{Z}_R(x)=\prod_{j\geq 1}Z_X(xq^{-j}),$ where Z_X is the Hasse–Weil zeta.
- X a smooth surface: $\widehat{Z}_R(x) = \prod_{i,j \ge 1} Z_X(x^i q^{-j}).$

The two above follow from classical formulas for $R = \mathbb{F}_q[X], \mathbb{F}_q[X, Y]$ and local-global.

- X a nodal singular curve: has an explicit formula with mysterious combinatorics (H., 2021)
- X other singular curve: has conjectural patterns (H., 2021)
- Fun fact: $R = \mathbb{F}_q$ (a point) is not a trivial case; in fact $\widehat{Z}_R(x)$ is the Rogers-Ramanujan series! (1,4 mod 5...)
- All other cases: wide open.

Since the combinatorial behavior of $\widehat{Z}_R(x)$ depends heavily on the algebraic geometry of R, any observation about $\widehat{Z}_R(x)$ may suggest interesting geometry of R.

In the rest of the talk, we will discuss an elementary observation about our Refined Theorem that seems to owe a higher-level explanation. It might inspire interesting noncommutative geometry of the quantum plane.

A cut-and-paste

Let's consider the following series:

$$\begin{split} \widehat{Z}_{\mathbb{F}_q[X]}(x) &= \sum_{n \ge 0} \frac{|\mathrm{Mat}_n(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n \\ \widehat{Z}_{\mathbb{F}_q[X, X^{-1}]}(x) &= \sum_{n \ge 0} \frac{|\mathrm{GL}_n(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n = \frac{1}{1-x} \\ \widehat{Z}_{\mathbb{F}_q[[X]]}(x) &= \sum_{n \ge 0} \frac{|\mathrm{Nilp}_n(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n \end{split}$$

Local-to-global $\implies \widehat{Z}_{\mathbb{F}_q[X]}(x) = \widehat{Z}_{\mathbb{F}_q[X,X^{-1}]}(x)\widehat{Z}_{\mathbb{F}_q[[X]]}(x).$ Essentially the cut-and-paste $\mathbb{A}^1 = (\mathbb{A}^1 \setminus \{0\}) \sqcup \{0\}.$ Since $\operatorname{Mat}_n(\mathbb{F}_q)$ is easy to count (there are q^{n^2} matrices), this computes $|\operatorname{Nilp}_n(\mathbb{F}_q)|$ (an alternative proof of Fine–Herstein).

Global-to-local

The decomposition above is essentially the same phenomenon as

$$\sum_{n=0}^{\infty} \frac{|K_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n = \left(\sum_{n=0}^{\infty} \frac{|U_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n\right) \left(\sum_{n=0}^{\infty} \frac{|N_{\zeta,n}(\mathbb{F}_q)|}{|\mathrm{GL}_n(\mathbb{F}_q)|} x^n\right).$$

It appears that $\widehat{Z}_{\mathbb{F}_q[X,X^{-1}]}(x)$ and $\widehat{Z}_{\mathbb{F}_q[[X]]}(x)$ are "disjoint and independent" building blocks, just like $|U_{\zeta,n}(\mathbb{F}_q)|$ vs $|N_{\zeta,n}(\mathbb{F}_q)|$. But the story doesn't end here $-\widehat{Z}_{\mathbb{F}_q[X,X^{-1}]}(x)$ and $\widehat{Z}_{\mathbb{F}_q[[X]]}(x)$ are amazingly interconnected!

Key: $\mathbb{A}^1 \setminus \{0\}$ is composed of closed points, each of which "looks like" the origin.

Global-to-local

Recall local-to-global for $R = \mathbb{F}_q[X, X^{-1}]$:

$$\widehat{Z}_{\mathbb{F}_q[X,X^{-1}]}(x) = \prod_p \widehat{Z}_{R_p}(x).$$

Now, each R_p is smooth of dimension one, so its completion is isomorphic to a power series ring over some finite field. Therefore, all $\widehat{Z}_{R_p}(x)$ is essentially $\widehat{Z}_{\mathbb{F}_q[[X]]}(x)$ (though a substitution is needed), so $\widehat{Z}_R(x)$ is determined by $\widehat{Z}_{\mathbb{F}_q[[X]]}(x)$. Moreover, because $\widehat{Z}_R(x)$ is determined by $\widehat{Z}_{\mathbb{F}_q[[X]]}(x)$ alone, we can reverse this process ("global-to-local") and write down a formula that recovers $\widehat{Z}_{\mathbb{F}_q[[X]]}(x)$ from $\widehat{Z}_R(x) = 1/(1-x)$. (Yet another proof of Fine–Herstein!)

This idea is due to Bryan and Morrison (2015) in a more refined language of motivic classes. They actually did the case for $R = \mathbb{F}_q[X, Y]$ (namely, $K_{1,n}$).

Noncommutative Question.

Can you recover $|U_{\zeta,n}(\mathbb{F}_q)|$ from $|N_{\zeta,n}(\mathbb{F}_q)|$ (or vice versa), using the geometry of the quantum plane?

- The commutative analogue requires the notion of "localization at a prime ideal". Does this notion exist for the quantum plane?
- Recall that $|U_{\zeta,n}(\mathbb{F}_q)|$ depends on ζ (or the order of ζ), while $|N_{\zeta,n}(\mathbb{F}_q)|$ doesn't. So if $|N_{\zeta,n}(\mathbb{F}_q)|$ recovers $|U_{\zeta,n}(\mathbb{F}_q)|$, it must be because it also takes account of some geometry of the quantum plane that depends on ζ .

Final takeaway

- We extend a formula that counts matrix pairs AB = BA to the case $AB = \zeta BA$ where ζ is nonzero. The answer depends on the order of ζ as a root of unity.
- The count of $AB = \zeta BA$ encodes statistical information about modules over the quantum plane.
- The count in question has two seemingly independent building blocks that turn out to be interdependent in the $\zeta = 1$ case, using ingredients from (commutative) algebraic geometry. I hope that the study of a possible interdependence in the case of general ζ will inspire interesting noncommutative geometry.