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Motivation 1: Cohen–Lenstra heuristics

Let R be a Dedekind domain with only finite quotient fields. (For
example, R = Z.) Cohen and Lenstra considered the following function

ζ̂R(s) =
∑
M

1

|AutM |
|M |−s, (1)

where M runs over all isomorphism classes of finite-cardinality R-modules.

They proved formulas and theorems for ζ̂R(s), which are crucial in their
important work on the distribution of class groups of quadratic fields,
where they proposed the Cohen–Lenstra heuristics.
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Motivation 2: Rogers–Ramanujan

Consider the power series in x and q:

F (x; q) :=

∞∑
n=0

qn
2

(1− q)(1− q2) . . . (1− qn)
xn. (2)

The two Rogers–Ramanujan identities say that F (1; q) and F (q; q)
each equals to an infinite product.

We will explain why F (x; q) can be considered the simplest instance of a
generalization of ζ̂R(s).
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Motivation 3: Matrix enumeration

We will connect ζ̂R(s) to the following combinatorial results.

Fine and Herstein (1958) counted the number of nilpotent n× n
matrices over Fq.
Fine and Feit (1960) counted pairs of commuting n× n matrices over
Fq.
Fulman and Guralnick (2018) counted pairs of commuting n× n
nilpotent matrices over Fq.

More importantly, each of these counts forms a nice generating function.

We will give a common generalization of ζ̂R(s) and these generating
functions.
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Motivation 4: Moduli spaces

We will also connect ζ̂R(s) to the following recent results:

[Behrend and Bryan] and [Bryan and Morrison] proved formulas for a
generating function for the motivic class in the Grothendieck ring of
the moduli stack of finite-length coherent sheaves over C2.

Moschetti and Ricolfi classified small-length coherent sheaves over C2

and found their automorphism groups, refining the work above.
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A unifying framework

Let R be a commutative ring with only finite quotient fields. We define
the Cohen–Lenstra zeta function of R to be

ζ̂R(s) =
∑
M

1

|AutM |
|M |−s, (3)

where M runs over all isomorphism classes of finite-cardinality R-modules.
When R is Dedekind, this becomes Cohen–Lenstra’s construction.

More generally, let X be a scheme whose residue fields at closed points are
all finite. We define the Cohen–Lenstra zeta function of X to be

ζ̂X(s) =
∑
M

1

|AutM |
|H0(X;M)|−s, (4)

where M runs over all isomorphism classes of finite-length coherent
sheaves on X. (Note that such sheaves are torsion and supported at
finitely many closed points of X.)
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Existing work in the new context

The results mentioned before are statements about different instances of
the Cohen–Lenstra zeta function.

The construction ζ̂X(s) for a scheme X is a direct generalization of
Cohen–Lenstra’s ζ̂R(s) because ζ̂R(s) = ζ̂SpecR(s).

The series F (x; q) in the Rogers–Ramanujan identities is essentially
the Cohen–Lenstra zeta function of a single point. (So even ζ̂Fq(s) is
not boring!)

The three matrix-enumeration results are equivalent to giving
formulas to ζ̂R(s) for R = Fq[[t]],Fq[u, v],Fq[[u, v]] respectively.

The work about the motivic class of a moduli stack is essentially
computing ζ̂X(s) where X = A2 is the plane.
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Goal questions

The existing work and our work (to be mentioned) suggest that the
Cohen–Lenstra zeta function ζ̂R(s) (or ζ̂X(s)) is interesting in its own
right. We will explore the following questions:

1 How does it behave algebraically and analytically in general?

2 What do the properties of ζ̂X(s) reveal about the geometry of X?
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Known properties of ζ̂X(s)

(Euler product) The product being over all closed points of X, we
have

ζ̂X(s) =
∏
p

ζ̂OX,p
(s) =

∏
p

ζ̂ÔX,p
(s) (5)

(Known cases) Formulas for ζ̂X(s) are implicit in the motivic work of
[Behrend and Bryan] and [Bryan and Morrison] if X is a smooth
curve or a smooth surface over Fq. Moreover, in these cases, all
factors in the product above are known.

We will address singular cases (which require different methods), keeping
in mind that the question is local due to the Euler product.
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Implications of the properties

If X is a singular curve or surface over Fq, the Euler product of ζ̂X(s)

splits into known factors (ζ̂OX,p
(s) for smooth points p) and mysterious

factors (ζ̂OX,p
(s) for singular points p).

In other words, ζ̂X(s) is really about the singularities of X. We can
partially answer a goal question:

Q What does the property of ζ̂X(s) reveal about the geometry of X?

A Its factor, namely, ζ̂OX,p
(s), is an invariant attached to the

singularity at p. It is a datum that can be added to the classification
of singularities, though it is not yet clear what it means geometrically.

Due to the importance of this factor, denote ζ̂X,p(s) := ζ̂OX,p
(s).
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Main conjecture

We propose that the poles of ζ̂X,p(s) encode geometry about the
resolution of singularity at p. To state the conjecture, we consider the
following power series in x for a scheme X over Fq:

ẐX/Fq
(x) =

∑
M

1

|AutM |
xdimFq H

0(X;M) (6)

We have ζ̂X(s) = ẐX/Fq
(q−s). We will drop Fq in the notation if the

ground field is implicit in the context.

Conjecture (H.)

Assume that p is a singular Fq-point on a reduced Fq-curve X that admits

a resolution singularity π : X̃ → X. Then ẐX,p(x) has a meromorphic
continuation to C given by

ẐX,p(x) =
(
(1− q−1x)(1− q−2x) . . .

)−|π−1(p)|
HX,p(x) (7)

for some entire function HX,p(x).
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Remarks on the conjecture

The power series HX,p(x) only depends on the singularity (X, p).
Thus HX,p(x) is another invariant of the singularity (X, p).

The conjecture claims that HX,p(x) is always entire.

The function ẐX,p(x) is already an Euler factor, which does not
promise any further factorization a priori. The unusual claim that it
can be further factorized is not a consequence of the Euler product.

The conjecture implies that ẐX,p(x) has a meromorphic continuation
to all of C, which is nontrivial.

The conjecture gives a complete description of the poles of ẐX,p(x)
in terms of the branching number of p.
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Main conjecture: Global version

The main conjecture is equivalent to an elegant global statement.

Conjecture (H.)

Let X be a reduced curve over Fq, and let X̃ be a resolution of singularity

of X. Then ẐX(x) has a meromorphic continuation to C given by

ẐX(x) = Ẑ
X̃

(x)HX(x) (8)

for some entire function HX(x).
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Evidence of the conjecture

(Main result) We prove that the conjecture holds for a type of
singularity, namely, the (ordinary) node. This is the first and only
proven case of this conjecture so far.

As a heuristical evidence, an analogous statement holds for an
analogous generating function of Hilbert schemes if the singularity is
planar (having a model on a plane curve), or more generally,
Gorenstein. (work of Göttsche and Shende)
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Main result

Theorem (H.)

Let Yq = SpecFq[u, v]/(uv) be the union of two intersecting lines. Then

the conjecture holds for Yq, namely, ẐYq(x) is of the form

ẐYq(x) =
(
(1− x)(1− q−1x)(1− q−2x) . . .

)−2
Hq(x) (9)

where Hq(x) is entire.

In particular, this result shows that the conjecture holds for curves with
only (ordinary) nodal singularities.
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Main result: combinatorics

We prove the main result by proving the following combinatorial result,
which is interesting its own right.

Theorem (H.)

We have an identity of formal power series in x:

∞∑
n=0

|{(A,B) : A,B ∈ Matn(Fq), AB = BA = 0}|
|GLn(Fq)|

xn

=
(
(1− x)(1− q−1x)(1− q−2x) . . .

)−2
Hq(x)

(10)

where

Hq(x) :=
∞∑
k=0

q−k
2
x2k

(1− q−1) . . . (1− q−k)
(1− q−k−1x)(1− q−k−2x) . . . (11)

We remark that the hard part of the proof is to find this particular
expression of Hq(x). 16 / 24



Remarks

It is unknown if the main result has a geometric proof. The only
known proof that Hq(x) is entire is its explicit combinatorial formula.

The evidence so far suggests that there are mysteries about the stack
of finite-length coherent sheaves that we don’t understand. We hope
that an attempt to prove the conjecture can yield deeper
understandings about its geometry.

The conjecture can always be “tested” by converting it into a matrix
counting question. However, this question is still too hard even for a
computer test.

The conjecture, if true, would imply the following asymptotics:

|{(A,B) : A,B ∈ Matn(Fq), A2 = Bd, AB = BA}|

∼

{
C(d, q) qn

2
, d odd;

C(d, q)nqn
2
, d even,

for some C(d, q) > 0 as n→∞, assuming q is odd.
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More on goal questions

We continue exploring the two goal questions:

1 How does ẐX(x) behave algebraically and analytically in general?

2 What do the properties of ẐX(x) reveal about the geometry of X?

Now, in light of the conjecture, for a curve singularity (X, p), we can ask a
refined version of the second question:

3 What do the properties of the (conjecturally) holomorphic factor
HX,p(x) reveal about the geometry at p?
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General analytic behavior

1 How does ẐX(x) behave algebraically and analytically in general?

Partial answer: It appears that the analytic behavior of ẐX(x) is
determined by dimX more than anything else (such as smoothness and
reducedness).

Let X be an Fq-variety that is not necessarily reduced, then

If dimX = 0, then ẐX(x) appears to be entire.

If dimX = 1, then ẐX(x) appears to have a meromorphic
continuation to all of C, whose poles carry important geometry
information (e.g. the main conjecture).

If dimX = 2, then ẐX(x) appears to be meromorphic on the unit
disk (and cannot be extended further).

If dimX ≥ 3, then ẐX(x) appears to be divergent for x 6= 0.
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On the holomorphic factor

3 For a curve singularity (X, p), what do the properties of the
holomorphic factor HX,p(x) (in the main conjecture) reveal about the
geometry at p?

It appears that

The function HX,p(x) for a general curve singularity (X, p) should share
some features with the partial theta function.

The partial theta function Θp(x; q−1) :=
∑

n≥0 q
−n2

xn has the following
features:

It has a functional equation.

It has smooth coefficients, namely,
a2n

an−1an+1
converges as n→∞.

21 / 24



On the holomorphic factor

Many analytic properties of the partial theta function are consequences of
its smooth coefficients, as is shown in the work of Nguyen and
Vishnyakova, etc. Having smooth coefficients is thus the key feature to
look for in order to compare HX,p(x) with Θp.

We conjecture the following based on numerical observations:

Conjecture (H.)

Let
∑∞

n=0 anx
n be the series Hq(x) in the main result. Then its

even-degree terms and odd-degree terms have smooth coefficients, and
moreover,

lim
n→∞

a22n
a2n−2a2n+2

= lim
n→∞

a22n+1

a2n−1a2n+3
= q2 (12)
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Final takeaways

We define the Cohen–Lenstra zeta function, a generalization of a
function defined by Cohen and Lenstra.

The generalization is a common framework that unifies several
problems from module classification, q-series, matrix counting, and
moduli spaces.

We explore how properties of the Cohen–Lenstra zeta function of a
variety depend on its geometry. We find that they mostly depend on
the dimension and the singularities, but there are still mysteries.

The most notable pattern is that the resolution of a curve singularity
appears to determine the pole of the Cohen–Lenstra zeta function.
The main result verifies the case of nodal singularity, supporting the
guess that the pattern holds in general.
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Thank you!


